Recent results from NNLOJET

Nigel Glover

IPPP, Durham University

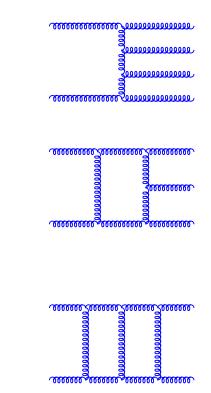
European Research Council Established by the European Commission Supporting top researchers from anywhere in the world

HiggsTools Third Annual Meeting Torino, 15 May 2017

Anatomy of a Higher Order calculation

e.g. pp to JJ at NNLO

- ✓ double real radiation matrix elements $d\hat{\sigma}_{NNLO}^{RR}$
 - implicit poles from double unresolved emission
- ✓ single radiation one-loop matrix elements $d\hat{\sigma}_{NNLO}^{RV}$
 - explicit infrared poles from loop integral
 implicit poles from soft/collinear emission
- ✓ two-loop matrix elements $d\hat{\sigma}_{NNLO}^{VV}$
 - explicit infrared poles from loop integral



$$\mathrm{d}\hat{\sigma}_{NNLO} \sim \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\hat{\sigma}_{NNLO}^{RR} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\hat{\sigma}_{NNLO}^{RV} + \int_{\mathrm{d}\Phi_m} \mathrm{d}\hat{\sigma}_{NNLO}^{VV}$$

Anatomy of a Higher Order calculation

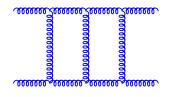
e.g. pp to JJ at NNLO

✓ Double real and real-virtual contributions used in NLO calculation of X+1 jet

Can exploit NLO automation

... but needs to be evaluated in regions of phase space where extra jet is not resolved

Two loop amplitudes - very limited set known



... currently far from automation

Method for cancelling explicit and implicit IR poles - overlapping divergences
 ... currently not automated

NNLOJET

X. Chen, J. Cruz-Martinez, J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, NG, A. Huss, M. Jaquier, T. Morgan, J. Niehues, J. Pires Implementing NNLO corrections including decays for

✓
$$pp \to H, W, Z$$

✓ $pp \to H + J$ 1408.5325, 1607.08817
✓ $pp \to Z + J$ 1507.02850, 1605.04295, 1610.01843
✓ $pp \to JJ$ 1301.7310, 1310.3993, 1611.01460, 1704.00923
✓ $ep \to JJ + (J)$ 1606.03991, 1703.05977
✓

using Antenna subtraction

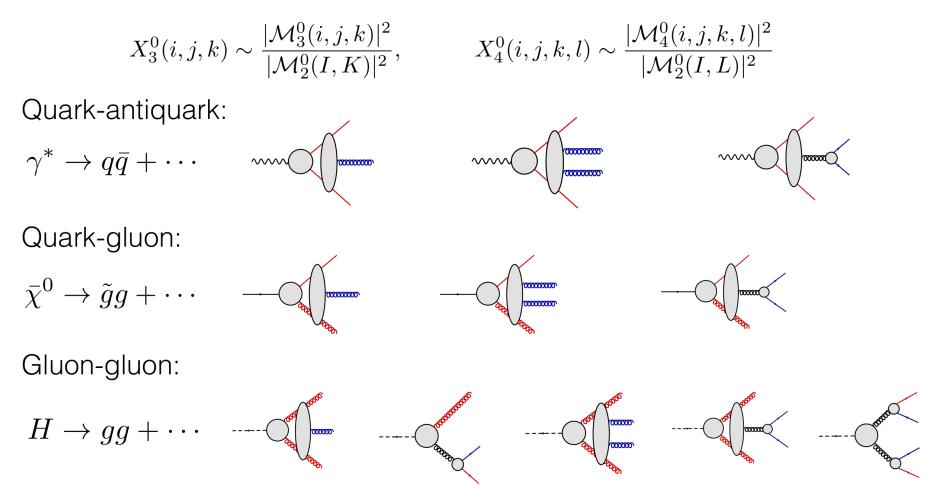
$$|M(1,\ldots,i,j,k,\ldots,n)|^2 \to X(i,j,k)|M(1,\ldots,I,K,\ldots,n)|^2$$

✓ all singularities associated with j soft or collinear with i or k are concentrated in antenna X

 \checkmark I and K are resolved partons

Antenna subtraction at NNLO

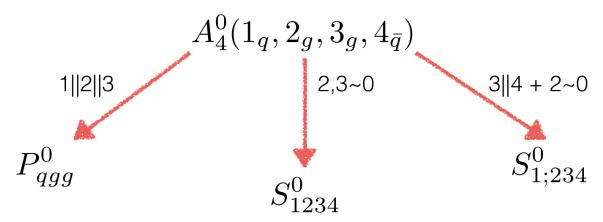
 \checkmark Antenna subtraction exploits the fact that matrix elements already possess the intricate overlapping divergences



✓ plus mappings $i + j + k \rightarrow I + J$, $i + j + k + l \rightarrow I + L$

Antenna subtraction at NNLO

✓ Antenna mimics all singularities of QCD

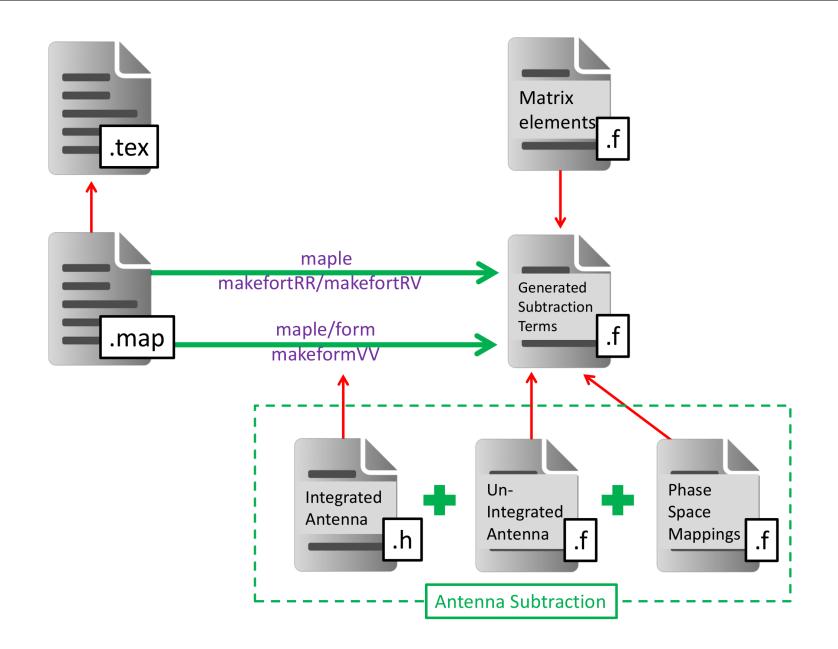


✓ Phase space map smoothly interpolates momenta for reduced matrix element between limits

$$(123) = xp_1 + r_1p_2 + r_2p_3 + zp_4$$

$$(\widetilde{234}) = (1-x)p_1 + (1-r_1)p_2 + (1-r_2)p_3 + (1-z)p_4$$

Automatically generating the code (1)



Maple script: RR example

$$\begin{split} +F40a(i,j,k,l) *A4g0(1,2,[i,j,k],[j,k,l]) \\ -f30FF(i,j,k) *f30FF([i,j],[j,k],l) \\ *A4g0(1,2,[[i,j],[j,k]],[[j,k],l]) \\ \cdots \\ +F_4^{0,a}(i,j,k,l) A_4^0(1,2,(\widetilde{ijk}),(\widetilde{jkl})) \\ -f_3^0(i,j,k) f_3^0((\widetilde{ij}),(\widetilde{jk}),l) A_4^0(1,2,[(\widetilde{ij}),(\widetilde{jk})],(\widetilde{(\widetilde{jk})l})) \\ \cdots \end{split}$$

- ✓ X_4^0 , X_3^0 (and X_3^1 in RV) are unintegrated antennae
- ✓ [i, j, k] or (ijk) are mapped momenta

Maple script: VV example

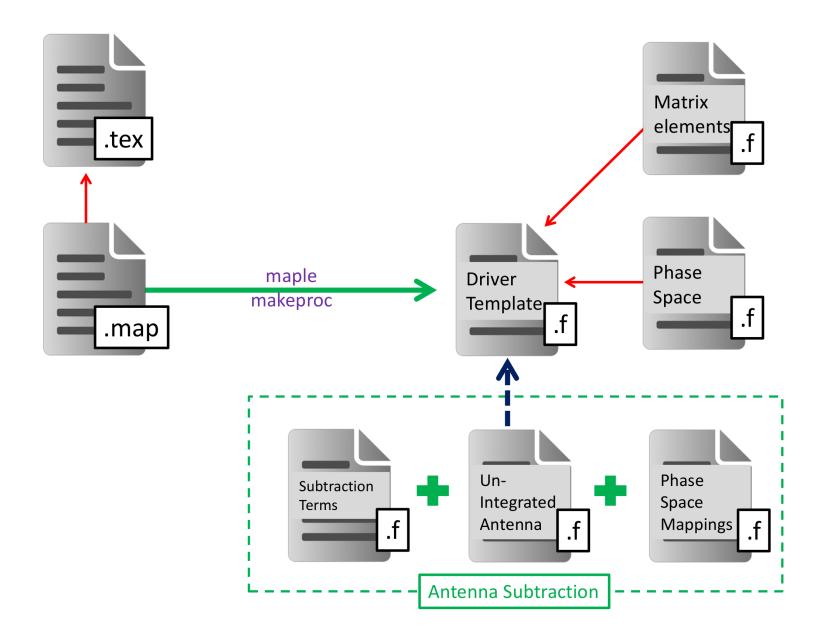
 $\begin{array}{ll} -(+1/2*\operatorname{calgF40FI}(2,3)\\ +1/2*\operatorname{calgF31FI}(2,3)\\ +b0/e*1/2*QQ(s23)*\operatorname{calgF30FI}(2,3)\\ -b0/e*1/2*\operatorname{calgF30FI}(2,3)\\ -1/2*\operatorname{calgF30FI}(2,3)*1/2*\operatorname{calgF30FI}(2,3)\\ -1/2*\operatorname{gamma2gg}(z2)\\ +b0/e*1/2*\operatorname{gamma1gg}(z2)\\)*A4g0(1,2,3,4)\\ \dots \end{array} + \begin{bmatrix} - & \frac{1}{2} \mathcal{F}_{4,g}^{0}(s_{2}) \\ - & \frac{1}{2} \mathcal{F}_{3,g}^{1}(s_{2}) \\ - & \frac{b_{0}}{2\epsilon} \left(\frac{s_{23}}{\mu_{R}^{2}} \right) \end{bmatrix}$

✓ \mathcal{X}_{4}^{0} , \mathcal{X}_{3}^{0} and \mathcal{X}_{3}^{1} are integrated antennae

$$- \frac{1}{2} \mathcal{F}_{4,g}^{0}(s_{23}) - \frac{1}{2} \mathcal{F}_{3,g}^{1}(s_{23}) - \frac{b_{0}}{2\epsilon} \left(\frac{s_{23}}{\mu_{R}^{2}}\right)^{-\epsilon} \mathcal{F}_{3,g}^{0}(s_{23}) + \frac{b_{0}}{2\epsilon} \mathcal{F}_{3,g}^{0}(s_{23}) + \frac{1}{4} \mathcal{F}_{3,g}^{0}(s_{23}) \otimes \mathcal{F}_{3,g}^{0}(s_{23}) + \frac{1}{2} \Gamma_{gg}^{(2)}(z_{2})$$

– p. 9

Automatically generating the code (2)



Maple script to produce driver template

.map

R := [[A5g0, [g, q, q, q, q], 1], [B3q0, [ab, q, q, q], 1/nc],]: $d\sigma_{gg}^{R} = \mathcal{N}_{LO}\left(\frac{\alpha_{s}N}{2\pi}\right)$ $+2\frac{1}{3!}\left(\sum_{12} \text{A5g0}(1,2,3,4,5) - \text{ggA5g0SNLO}(1,2,3,4,5)\right)$ $+\frac{N_F}{N}\left(\sum_{a} B3g0(3,1,2,4,5) - ggB3g0SNL0(3,1,2,4,5)\right)$...|

Checks

Analytic pole cancellations for RV, VV 🖌 Unresolved limits for RR, RV \checkmark

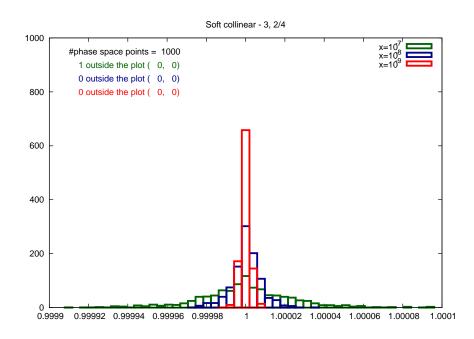
Poles
$$\left(d\sigma^{RV} - d\sigma^{T}\right) = 0$$

Poles $\left(d\sigma^{VV} - d\sigma^{U}\right) = 0$

09:26:35maple/process/Z	
<pre>\$ form autoqgB1g2ZgtoqU.frm</pre>	
FORM 4.1 (Mar 13 2014) 64-bits	
#-	
poles = 0;	
, , , , , , , , , , , , , , , , , , ,	
6.58 sec out of 6.64 sec	

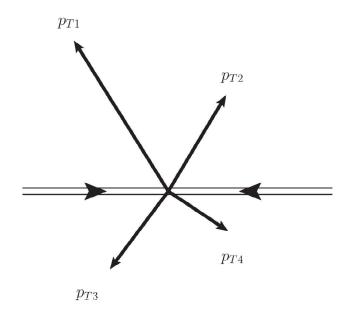
$$\begin{array}{cccc} d\sigma^S & \longrightarrow & d\sigma^{RR} \\ d\sigma^T & \longrightarrow & d\sigma^{RV} \end{array}$$

$$q\bar{q} \rightarrow Z + g_3 \ g_4 \ g_5 \ (g_3 \text{ soft \& } g_4 \parallel \bar{q})$$



Currie, NG, Pires (16)

✓ Classic jet observable



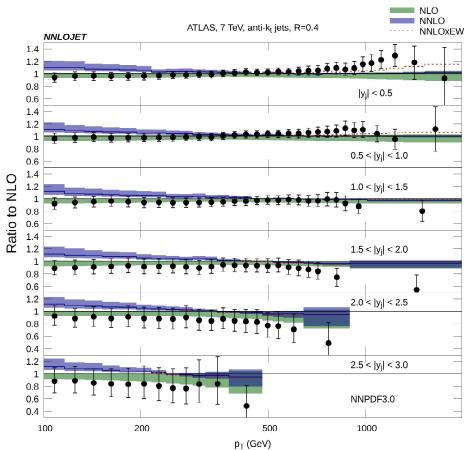
- Every jet in the event enters in the distribution
- ✓ Expect sensitivity to PDFs
- \checkmark ... and to α_s

✓ All sub-processes included $-gg, gq, q\bar{q}, qq$ etc

- in leading colour approximation i.e. all $\alpha_s^2 N^2$, $\alpha_s^2 N N_F$, $\alpha_s^2 N_F^2$ contributions relative to Born
- × missing corrections O(1), N_F/N , $1/N^2$, N_F/N^3 , $1/N^4$
- ✓ expect to be less than 10% of the NNLO correction (as at NLO)

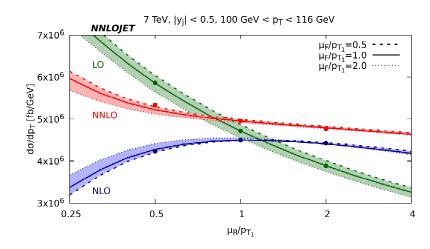
Currie, NG, Pires (16)

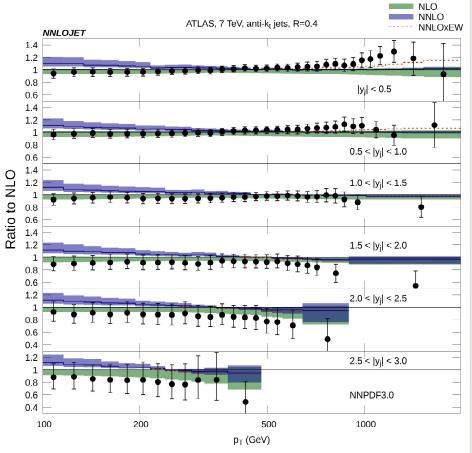
- ✓ ATLAS 7 TeV data, 4.5 fb⁻¹ JHEP02(2015)153 JHEP09(2015)141 (Erratum)
- ✓ anti- k_T algorithm with R = 0.4
- ✓ six rapidity slices, 0 - 0.5, 0.5 - 1.0, 1.0 - 1.5, 1.5 - 2.0, 2.0 - 2.5, 2.5 - 3.0
- ✓ NNPDF3.0_NNLO PDFs
- ✓ negligible NP corrections



Currie, NG, Pires (16)

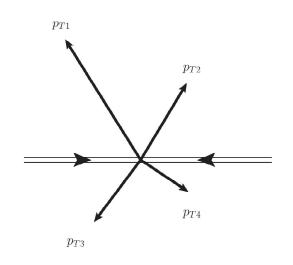
- ✓ NLO describes the data pretty well
- NLO has relatively small scale dependence
 - because the central scale choice lies close to the turning point in the scale variation plot
- ✓ NNLO effects around 10% at low p_T and small at high p_T

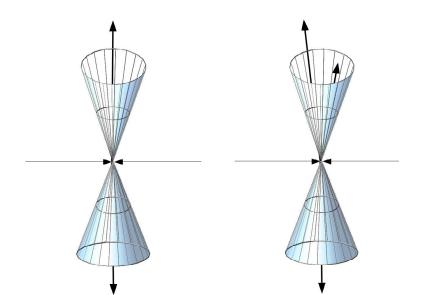




Scale Choice

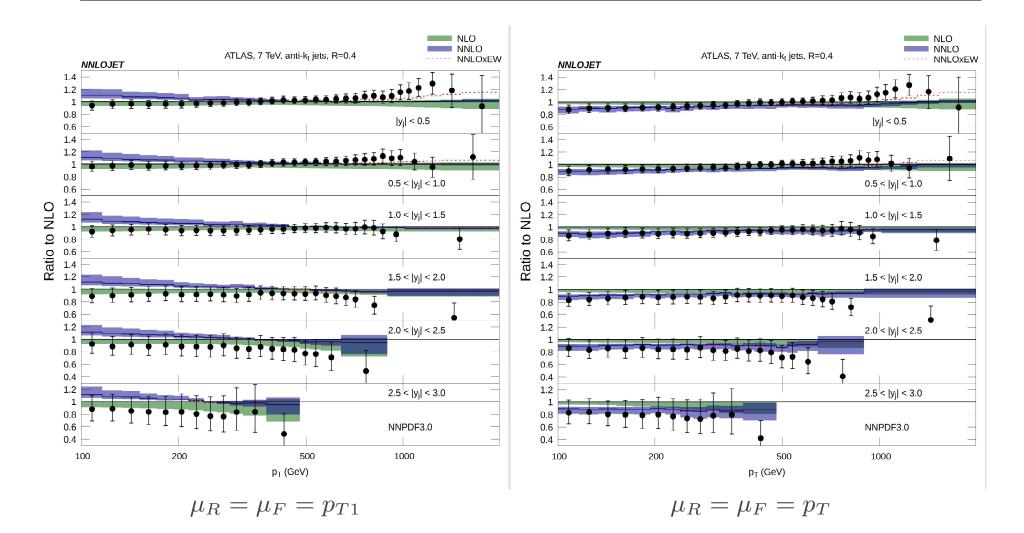
- ✓ no fixed hard scale for jet production
- ✓ two widely used scale choices
 - leading jet p_T (p_{T1})
 - individual jet p_T (p_T)
- ✓ different scale changes PDF and α_s
- no difference for back-to-back jet configurations (only arises at higher orders)



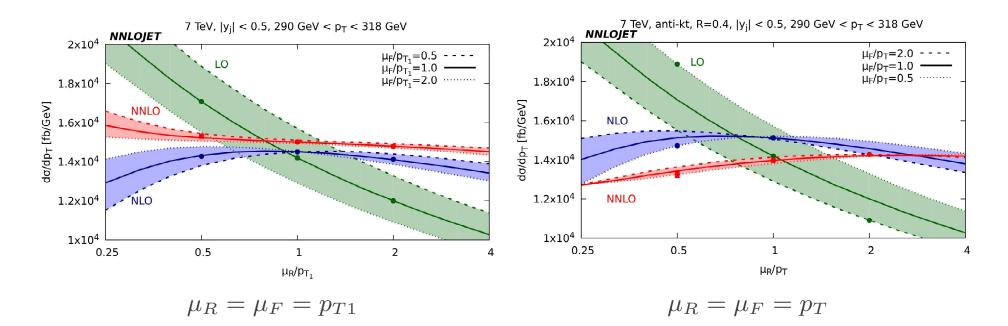


Scale Choice

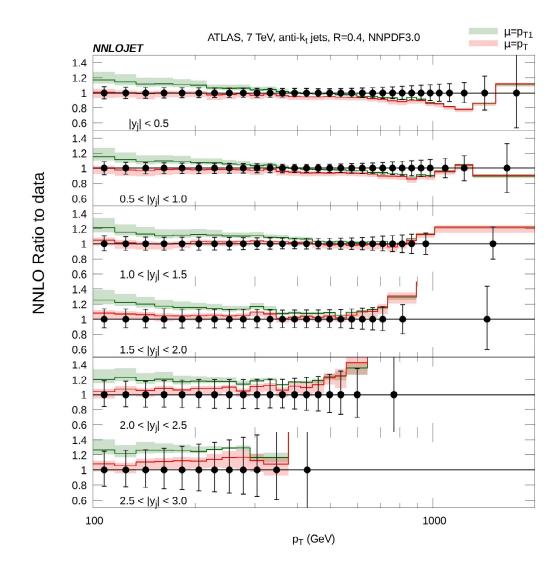
At NLO, $p_T \neq p_{T1}$ for 3-jet rate (small effect) 2-jet rate (3rd parton falls outside jet) Changing R has an effect on the cross section, but also on the scale choice: introduces spurious *R*-dependence in scale choice p_{T1} scale has no *R*-dependence at NLO, unlike p_T at NNLO p_{T1} scale depends on R in some four-parton configurations



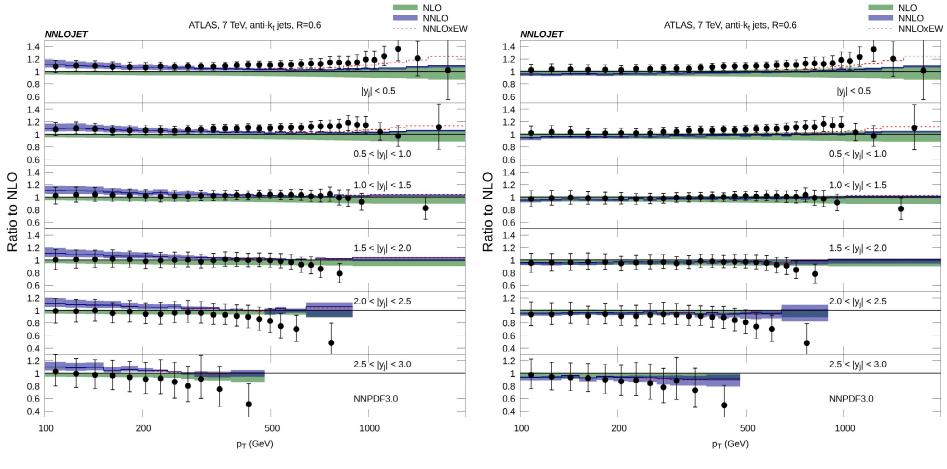
- X Quite different behaviour!
- ✓ NLO with $\mu = p_{T1}$ describes R = 0.4 data quite well
- ✓ NNLO with $\mu = p_T$ describes R = 0.4 data quite well



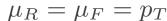
- X Quite different behaviour!
- scale uncertainty much smaller than difference between scale choices
- explore alternative scale choices



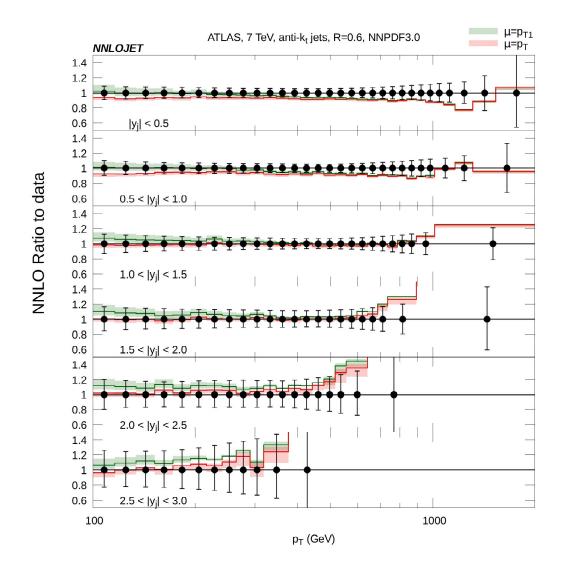
X Scale uncertainty is smaller than the uncertainty in choosing p_T or p_{T1}



 $\mu_R = \mu_F = p_{T1}$



- X Quite different behaviour!
- ✓ NLO with $\mu = p_T$ describes R = 0.6 data quite well
- ✓ NNLO with $\mu = p_{T1}$ describes R = 0.6 data quite well



X Scale uncertainty is smaller than the uncertainty in choosing p_T or p_{T1}

CPU cost

✓ Standalone production run with fixed \sqrt{s} , fixed *R*, fixed PDF, three scale variation for $\mu = p_{T1}$ and $\mu = p_T$ (Warmup ~ 1-2%)

Job Type	No. Jobs	Runtime/Job (hr)	Total Runtime
LO	200	0.5	100
NLO-V	500	1.5	750
NLO-R	500	2	1000
NNLO-VV	600	20	12000
NNLO-RV	2500	50	125000
NNLO-RRa	3500	50	175000
NNLO-RRb	2000	20	40000
			353850

✓ because LO is independent of R and $p_T = p_{T1}$ to obtain different cone sizes/different scales can do a (much cheaper) NLO 3-jet calculation

$$\frac{d\sigma^{NNLO}(R_2)}{dp_T} = \frac{d\sigma^{NNLO}(R_1)}{dp_T} + \left(\frac{d\sigma^R(R_2)}{dp_T} - \frac{d\sigma^R(R_1)}{dp_T}\right) + \left(\frac{d\sigma^{RV}(R_2)}{dp_T} - \frac{d\sigma^{RV}(R_1)}{dp_T}\right) + \left(\frac{d\sigma^{RR}(R_2)}{dp_T} - \frac{d\sigma^{RR}(R_1)}{dp_T}\right)$$

– p. 23

Summary

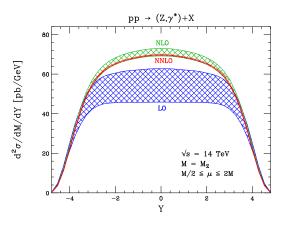
- NNLOJET is able to make a range of fully differential parton level NNLO predictions that can be compared with LHC fiducial cross sections
- code is partially automated and typically requires significant CPU resource
- need validation with different IR subtraction schemes
- results show anticipated features of NNLO calculations reduction of scale uncertainty, stabilisation of perturbative series, etc
- serious study of choice of scales and pdf uncertainties needed and in progress
- ✓ Single jet inclusive distribution
 - Reduction of the scale uncertainty but ...
 - difference between common scale choices p_T and p_{T1} larger than scale uncertainty
 - NP effects important at large R, low p_T (~ 30% for R = 0.7, $p_T \sim 50$ GeV)
 - + EW effects important at large p_T (~ 5% for $p_T \sim 1000 \text{ GeV}$)

Work in progress:

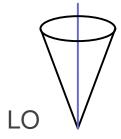
- ✓ Including other processes, such as dijets, other Higgs decays, etc
- ✓ Studying potential of data to constrain PDF sets and interface to APPLgrid, fastNLO

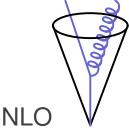
What to expect from NNLO (1)

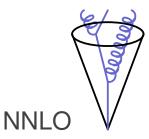
✓ Reduced renormalisation scale dependence



- ✓ Better able to judge convergence of perturbation series
- ✓ Fiducial (parton level) cross sections. Fully differential, so that experimental cuts can be applied directly
- Event has more partons in the final state so perturbation theory can start to reconstruct the shower
 - better matching of jet algorithm between theory and experiment







What to expect from NNLO (2)

All channels present at NNLO

LO	NLO	NNLO
gg	gg, qg	gg, qg, qq
$q \bar{q}$	$qar{q}$, qg	$qar{q}$, qg, gg

 Better description of transverse momentum of final state due to double radiation off initial state

- ✓ At LO, final state has no transverse momentum
- ✓ Single hard radiation gives final state transverse momentum, even if no additional jet
- ✓ Double radiation on one side, or single radiation of each incoming particle gives more complicated transverse momentum to final state