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Chapter Overview

→ Chapter Overseer: Nigel

Chapters 1,2,5,6: φ∗η in the Standard Model

→ Stephen (theory: one massive loop in the SM, heavy top
limit)

→ Hjalte (theory: two loops in the SM)

→ Juan (pheno: higher orders in EFT)

Chapters 3,4: Experimental study of φ∗η

→ Theo (H → ττ)

→ Yacine (H → γγ)

Chapters 7,8: φ∗η Beyond Standard Model

→ Shruti (review pHT distributions in the MSSM)

→ Matias (compare pHT and φ∗η in the MSSM)
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The search for new observables: Z → `+`−

Already in Tevatron, measurements of the transverse momentum of
the Z boson (pZt ) were limited by event selection and lepton energy
resolution rather than event statistics.

In particular, at low pZt , bin sizes were limited by energy resolution on
the leptons after unfolding.

mZ

~p l−

~p l+

p`
±
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mZ
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~pZT = ~p`
−
T + ~p`
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δpZT ∼
√

2(δp`
±
T )

this will be true even when pZT << p`
−
T
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Definition of φ∗η

New observables were proposed to bypass these systematic
uncertainties while accessing the same physics as pZt like aZT or φ∗η

The φ∗η observable was proposed (hep-ex/1009.15801). This
observable corresponds to the transverse momentum at very low pT
through a trivial relations.

We are looking for an observable independent on the energy of the
final states that allow us to probe the same physics as the transverse
momentum

φ∗η , depending only on the direction of the two final state leptons

allows us to access the physics in the low pZt regime while being
independent of the energy of the leptons.

1Banfi A., Redford S., Vesterinen M., Waller P., Wyatt T.R.
Juan M Cruz Martinez (IPPP) φ∗

η Higgs 5 / 26



Definition of φ∗η

φ∗η is defined by:

φ∗η ≡ tan

(
φacop

2

)
sin(θ∗η).

The acoplanarity angle (φacop) is given by the azimuthal angle between
the two leptons (∆φ) as:

φacop ≡ π −∆φ,

Graphically, in the plane transverse to the beam direction:

∆φ

φacop

t̂

Recoil

~p `−
T ~p `+

T

~pZ
T ~aT

~aL
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Definition of φ∗η

φ∗η is defined by:

φ∗η ≡ tan

(
φacop

2

)
sin(θ∗η).

The acoplanarity angle (φacop) is given by the azimuthal angle between
the two leptons (∆φ) as:

φacop ≡ π −∆φ,

Whereas θ∗η :

cos(θ∗η) ≡ tanh

(
η`

− − η`+

2

)
θ∗η is the scattering angle of the leptons with respect to the proton beam
in a reference frame boosted along the beam direction such that the two
leptons are back to back.
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Definition of φ∗η

φ∗η is defined by:

φ∗η ≡ tan

(
φacop

2

)
sin(θ∗η).

φ∗η will vanish at Born level (Z plus no jet production), as pZT goes to
0 and azimuthal angle between the two leptons tends to π
(φacop = 0). Therefore, φ∗η measures deviations from
”back-to-backness” of the two leptons.

Ie, any deviations from φ∗η = 0 will be generated by the same

mechanisms that generate a finite pZT .
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Experimentally

We can illustrate the improvement by showing the mean resolution of
several observables in experimental measurements. Plots taken from
hep-ex/1009.15802).
Tracker

2Banfi A., Redford S., Vesterinen M., Waller P., Wyatt T.R.
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Experimentally

We can illustrate the improvement by showing the mean resolution of
several observables in experimental measurements. Plots taken from
hep-ex/1009.15802).
Calorimeter:
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pT and φ∗η relationship

In the small pT (and φ∗η ) region, we can approximate the value of φ∗η as:

φ∗η ≈
pT

2m`−`+
(1)

Let us see what’s the actual range of application of this approximation and
when does it start to break down.
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pZT and φ∗η relationship
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Extension to H production

Source: ATLAS/CMS twiki pages

The LHC will provide enough statistics for Higgs production so that energy
resolution could again become more relevant that event statistics.
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Higgs Effective Theory

Even though the Higgs boson does not couple directly to gluon, due to the
nature of protons, in the LHC gluon fusion is the dominant channel for
Higgs production (through a massive quark loop).
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Higgs Effective Theory

H

g

g

−→ H

g

g

With an effective lagrangian such as:

L ∝ λHGµνGµν ,

with λ =

√
GF

√
2

6π αs .

Retaining top mass effect we find (at LO): M2 ∝ GFαsm
4
H | I (

m2
t

m2
H

) |2

where I (x) ' 1 + 1
4x .
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Higgs Effective Theory

This approximation holds quite well at low pHT
As the bulk of the cross section is concentrated at low pHT , it also
yields a good approximation ( 5%) of the inclusive cross section.

However, it performs quite badly as pHT grows.

Let us see this explicitly:
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Low pHT (φ∗η ) regime
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At low pHT the EFT approach works quite well for both distributions
Including the mass of the quarks running in the gg to H loop yields a small
correction, which depends on the quarks included.
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Moderate to high pHT (φ∗η ) regime
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The pHT distribution for the Effective Theory quickly becomes an unreliable
estimate
φ∗η remains stable even at very high φ∗η
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High φ∗η regime
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(very) High φ∗η regime
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Different approaches in order to capture the effect of the
massive loop

Higher order corrections for pHT are not available yet for the Standard
Model with finite quark masses.

→ We need to use the Effective Field Theory approach.

→ We need a way to estimate the associated uncertainty.
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EFT ⊗M

For the inclusive cross section (σ) it has been observed we can account for
the corrections due to quark running in the loop multiplying the higher
order inclusive EFT cross section by:

R =
σMLO
σEFTLO

We can extend this same approach to non inclusive quantities so for any
observable O(φ∗η , pHT ) we can perform the same reweighting bin-by-bin.

R(O) =

(
dσMLO
dO

)
/

(
dσEFTLO

dO

)
dσEFT⊗MNNLO

dO = R(O) ∗ dσ
EFT
NNLO

dO
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EFT ⊕M

Since at Leading Order we know the complete result for the Standard
Model with finite quark masses for Higgs plus jet production, we can do
the following:

dσEFT⊗MNNLO

dO =
dσEFTNNLO

dO + (R(dO)− 1)
dσEFTLO

dO
We can use these two approaches, EFT ⊗M and EFT ⊕M, in order to
estimate our lack of knowledge about the process.
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Comparisons of EFT ⊗M and EFT ⊕M for pHT

In order to compare the results of the EFT at NNLO we use the following
factorisation and renormalisation scales in order to estimate the associated
uncertainty:

µF = µR = [0.25, 0.5, 1] ∗
√

(pHT )2 + m2
H

We are interested on whether the difference between these approaches
is actually bigger than the scale uncertainty.
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Comparisons of EFT ⊗M and EFT ⊕M for pHT
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Comparisons of EFT ⊗M and EFT ⊕M for pHT

As expected, at low pHT all approaches yield comparable results

At high pHT , however, the difference between them is greater than the
scale uncertainty

This suggest our knowledge about the process is not enough to
provide predictions for the pHT distribution at high pHT .

And if we look at the φ∗η distribution:
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Comparisons of EFT ⊗M and EFT ⊕M for φ∗η
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Comparisons of EFT ⊗M and EFT ⊕M for pHT

As expected, at low pHT all approaches yield comparable results

At high pHT , however, the difference between them is greater than the
scale uncertainty

This suggest our knowledge about the process is not enough to
provide predictions for the pHT distribution at high pHT .

And if we look at the φ∗η distribution:
It offer us a more reliably way of modelling Higgs processes in the EFT, as
the effects of the loop are smeared over the distribution.
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Conclusions

We see that φ∗η offer us a new observable, effectively doubling our
available statistics.

To come:

→ φ∗η in the context of BSM physics

→ More on φ∗η in experimental settings
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Thanks!
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The thrust axis

∆φ

φacop

t̂

Recoil

~p `−
T ~p `+

T

~pZ
T ~aT

~aL

t̂ =

(
~p`

−
T − ~p`

+

T

)
|~p`−T − ~p`

+

T |
, (2)
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