Erik Postma - epostma@maplesoft.com - manager of the mathematical software group \& sr software architect

HiggsTools \& Maplesoft

- Giulia Gonella - interactive equation solving
- Agnieszka Ilnicka - generalizing bivariate limit code \& extending Feynman diagram code
- Raquel Gomez - evaluating Magma library for matrix algebra on GPUs (like LAPACK)
- Hjalte Frellesvig - implement the generalized polylogarithm in Maple

What's new at Maplesoft

MapleSim

- Multi-Domain Physical Modeling and Simulation

- Fast simulation and visualization

Möbius

- Online courseware environment that focuses on science, technology, engineering, and mathematics
- Automated assessment
- Gradebook and analytics

Maple

- At the heart of it all

What's new with Maple

Kernel

- Multithreaded garbage collection, mostly in a thread separate from the "main" thread
- Updated builtin libraries for polynomial arithmetic

GUI

- Construct collections of user interface elements programmatically - see this example
- Workbook: collection of worksheets and data files

Import("this://IRIS.csv");
$\left[\begin{array}{cccccccccc} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\ 1 & 5.1 & 0.222222222 & 3.5 & 0.625 & 1.4 & 0.06779661 & 0.2 & 0.041666667 & \ldots \\ 2 & 4.9 & 0.166666667 & 3 & 0.416666667 & 1.4 & 0.06779661 & 0.2 & 0.041666667 & \ldots \\ 3 & 4.7 & 0.111111111 & 3.2 & 0.5 & 1.3 & 0.050847458 & 0.2 & 0.041666667 & \ldots \\ 4 & 4.6 & 0.083333333 & 3.1 & 0.458333333 & 1.5 & 0.084745763 & 0.2 & 0.041666667 & \ldots \\ 5 & 5 & 0.194444444 & 3.6 & 0.666666667 & 1.4 & 0.06779661 & 0.2 & 0.041666667 & \ldots \\ 6 & 5.4 & 0.305555556 & 3.9 & 0.791666667 & 1.7 & 0.118644068 & 0.4 & 0.125 & \ldots \\ 7 & 4.6 & 0.083333333 & 3.4 & 0.583333333 & 1.4 & 0.06779661 & 0.3 & 0.083333333 & \ldots \\ 8 & 5 & 0.194444444 & 3.4 & 0.583333333 & 1.5 & 0.084745763 & 0.2 & 0.041666667 & \ldots \\ \ldots & \ldots\end{array}\right]$

Math library

- Most of the stuff that will interest you most

What's new with the math library

ThermophysicalData

with(ThermophysicalData) :
Property(temperature_triple, Water, useunits);

$$
273.1600000 \mathrm{~K}
$$

(4.1.1)

Property(temperature_dew_point, HumidAir, temperature_dry_bulb=300, pressure $=1 \mathrm{~atm}$,

$$
\begin{equation*}
\text { humidity } \left.=\frac{1}{2}\right) \tag{4.1.2}
\end{equation*}
$$

PHTChart(Water)

See also this demo.

Bivariate limits

$\operatorname{expr}:=\frac{x^{3} \cdot y}{x^{6}+y^{2}}$

$$
\begin{equation*}
\operatorname{expr}:=\frac{x^{3} y}{x^{6}+y^{2}} \tag{4.2.1}
\end{equation*}
$$

expr_line $:=$ expr $\left.\right|_{y=a x}$

$$
\begin{equation*}
\text { expr_line }:=\frac{x^{4} a}{x^{6}+a^{2} x^{2}} \tag{4.2.2}
\end{equation*}
$$

$\lim _{x \rightarrow 0}$ expr_line

$$
\begin{equation*}
0 \tag{4.2.3}
\end{equation*}
$$

curves $:=$ plots $[$ display $]\left(\right.$ seq (plots $[$ spacecurve $]\left([x\right.$, ax, expr_line $], x=\max \left(-2,-\frac{2}{|a|}\right) . . \min$ $\left(2, \frac{2}{|a|}\right)$, color $=$ red, thickness $\left.\left.\left.=3\right), a=\left[-4,-1,-\frac{1}{4}, \frac{1}{4}, 1,4\right]\right)\right)$

$\operatorname{limit}(\operatorname{expr},\{x=0, y=0\})$
undefined
(4.2.4)
plots $[$ display $]($ plot $3 d($ expr $, x=-2 . .2, y=-2 . .2$, grid $=[200,200])$, curves, plots:-
spacecurve $\left(\left[x, x^{3}\right.\right.$, eval $\left.\left(\operatorname{expr}, y=x^{3}\right)\right], x=-2^{\frac{1}{3}} . .2^{\frac{1}{3}}$, color $=$ green, thickness $\left.\left.=3\right)\right)$

$\operatorname{expr}:=\frac{x^{3} \cdot \sin (y)}{x^{6}+y^{2}}$

$$
\begin{equation*}
\operatorname{expr}:=\frac{x^{3} \sin (y)}{x^{6}+y^{2}} \tag{4.2.5}
\end{equation*}
$$

$\operatorname{limit}(\operatorname{expr},\{x=0, y=0\})$
undefined
This will be computed correctly in Maple 2017!

Partial differential equations

$$
\begin{align*}
& \begin{array}{l}
\text { pde }:=\frac{\partial}{\partial x} f(x, y, z)+\frac{\partial}{\partial y} f(x, y, z)+\frac{\partial}{\partial z} f(x, y, z)=f(x, y, z) \\
\text { pde }:=\frac{\partial}{\partial x} f(x, y, z)+\frac{\partial}{\partial y} f(x, y, z)+\frac{\partial}{\partial z} f(x, y, z)=f(x, y, z) \\
\text { pdsolve(pde) } \\
f(x, y, z)=F 1(-x+y,-x+z) \mathrm{e}^{x}
\end{array}
\end{align*}
$$

$$
\begin{align*}
& b c:=f(\alpha+\beta, \alpha-\beta, 1)=\alpha \cdot \beta \\
& b c:=f(\alpha+\beta, \alpha-\beta, 1)=\alpha \beta \tag{4.3.3}
\end{align*}
$$

pdsolve([bc, pde])

$$
\begin{equation*}
f(x, y, z)=\frac{(x-2 z+2+y)(x-y) \mathrm{e}^{z-1}}{4} \tag{4.3.4}
\end{equation*}
$$

How does this work?

$\operatorname{eval}($ (4.3.2), $[x=$ alpha $+\operatorname{beta}, y=$ alpha $-\operatorname{beta}, z=1])$

$$
\begin{equation*}
f(\alpha+\beta, \alpha-\beta, 1)={ }_{-} F 1(-2 \beta,-\alpha-\beta+1) \mathrm{e}^{\alpha+\beta} \tag{4.3.1.1}
\end{equation*}
$$

$\operatorname{eval}(\%, b c)$

$$
\begin{equation*}
\alpha \beta=F 1(-2 \beta,-\alpha-\beta+1) \mathrm{e}^{\alpha+\beta} \tag{4.3.1.2}
\end{equation*}
$$

isolate $\left(\%, \operatorname{op}\left(\operatorname{indets}\left(\%, \operatorname{specfunc}\left(_F 1\right)\right)\right)\right)$

$$
\begin{equation*}
F 1(-2 \beta,-\alpha-\beta+1)=\frac{\alpha \beta}{e^{\alpha+\beta}} \tag{4.3.1.3}
\end{equation*}
$$

solve $([\operatorname{op}(\operatorname{lhs}((4.3 .1 .3)))]=\sim[x 0, y 0]$, [alpha, beta $])$;

$$
\begin{equation*}
\left[\left[\alpha=1-y 0+\frac{x 0}{2}, \beta=-\frac{x 0}{2}\right]\right] \tag{4.3.1.4}
\end{equation*}
$$

$\operatorname{eval}(\mathbf{4 . 3 . 1 . 3}), \%[1])$

$$
\begin{equation*}
\Sigma_{-} F 1(x 0, y 0)=-\frac{\left(1-y 0+\frac{x 0}{2}\right) x 0}{2 \mathrm{e}^{1-y 0}} \tag{4.3.1.5}
\end{equation*}
$$

$\operatorname{eval}(\mathbf{(4 . 3 . 2}), \quad F 1=\operatorname{unapply}(r h s(\%),[x 0, y 0]))$

$$
\begin{equation*}
f(x, y, z)=-\frac{\left(\frac{x}{2}-z+1+\frac{y}{2}\right)(-x+y) \mathrm{e}^{x}}{2 \mathrm{e}^{x-z+1}} \tag{4.3.1.6}
\end{equation*}
$$

simplify (\%)

$$
\begin{equation*}
f(x, y, z)=\frac{(x-2 z+2+y)(x-y) \mathrm{e}^{z-1}}{4} \tag{4.3.1.7}
\end{equation*}
$$

pdsolve (p de)

$$
\begin{equation*}
u(x, y)=\operatorname{RootOf}\left(-y^{3}+3 y^{2} Z-3 y_{-} Z^{2}+Z_{-}^{3}-_{-} F 1\left(_Z\right)-x\right) \tag{4.3.6}
\end{equation*}
$$

DETools[remove_RootOf] (\%)

$$
\begin{equation*}
-y^{3}+3 y^{2} u(x, y)-3 y u(x, y)^{2}+u(x, y)^{3}-{ }_{-} F 1(u(x, y))-x=0 \tag{4.3.7}
\end{equation*}
$$

$\operatorname{eval}(\%, \quad F 1=\sin)$

$$
\begin{equation*}
-y^{3}+3 y^{2} u(x, y)-3 y u(x, y)^{2}+u(x, y)^{3}-\sin (u(x, y))-x=0 \tag{4.3.8}
\end{equation*}
$$

pdetest $(\%, p d e)$

$$
\begin{align*}
& b c:=u(0, \alpha)=\alpha \\
& \text { pdsolve }([p d e, b c]) \quad b c:=u(0, \alpha)=\alpha \tag{4.3.10}\\
& \begin{array}{l}
u(x, y)=x^{1 / 3}+y, u(x, y)=-\frac{x^{1 / 3}}{2}-\frac{\mathrm{I} \sqrt{3} x^{1 / 3}}{2}+y, u(x, y)=-\frac{x^{1 / 3}}{2} \\
\quad+\frac{\mathrm{I} \sqrt{3} x^{1 / 3}}{2}+y
\end{array}
\end{align*}
$$

Units

Consider:
$d:=5 \mathrm{~m}$

$$
\begin{equation*}
d:=5 \mathrm{~m} \tag{4.4.1}
\end{equation*}
$$

$t:=5 \mathrm{~s}$

$$
\begin{equation*}
t:=5 \mathrm{~s} \tag{4.4.2}
\end{equation*}
$$

$$
(x+y \cdot d) \cdot(y+t \cdot x)
$$

This is a violation of unit consistency: the first factor means that $\frac{x}{y}$ has dimension length, whereas the second factor implies that $\frac{y}{x}$ has dimension time. That cannot be.
Units:-TestDimensions $((x+y \cdot d) \cdot(y+t \cdot x))$;
false

How does this work? Every expression is taken apart and its dimension expressed in terms of the dimensions of its subexpressions; concrete units are expanded in terms of independent base dimensions. Subexpressions that we don't know anything about (such as $x, y, f(\ldots)$) remain; conceptually, $y \cdot d$ gets turned into dimension $(y) \cdot$ length. Inequalities, sums, and equations are recorded: their operands all have the same dimension; we turn that into expressions that must be dimensionless. In the example above:
exprs $:=\left[\frac{\text { dimension }(x)}{\text { dimension }(y) \cdot \text { length }}, \frac{\text { dimension }(y)}{\text { dimension }(x) \cdot \text { time }}\right]:$ might get represented as $A:=\langle 1,-1 ;-1,1\rangle$

$$
A:=\left[\begin{array}{cc}
1 & -1 \tag{4.4.4}\\
-1 & 1
\end{array}\right]
$$

$C:=\langle-1,0 ; 0,-1\rangle$

$$
C:=\left[\begin{array}{cc}
-1 & 0 \tag{4.4.5}\\
0 & -1
\end{array}\right]
$$

If we knew the dimensions of x and y, then we could express them in the same way; as an Ansatz, suppose x is a velocity and y is an area:
$B:=\langle 1,-1 ; 2,0\rangle$

$$
B:=\left[\begin{array}{cc}
1 & -1 \tag{4.4.6}\\
2 & 0
\end{array}\right]
$$

Now $A \cdot B+C$ give us the dimension of the expressions in exprs: $A \cdot B+C$

$$
\left[\begin{array}{cc}
-2 & -1 \tag{4.4.7}\\
1 & 0
\end{array}\right]
$$

Clearly we have failed to make these expressions dimensionless. And we have just shown that $A . B=-C$ has a solution if and only if there is a consistent assignment of dimensions to our atomic expressions. In this case, there is no solution:
LinearAlgebra:-LinearSolve ($A,-C$);
Error, (in LinearAlgebra:-BackwardSubstitute) inconsistent system
For another example, replace one y with $z:\left(x+y^{2} \cdot d\right) \cdot(z+t \cdot x)$. Now
exprs $=\left[\frac{\text { dimension }(x)}{\text { dimension }(y)^{2} \cdot \text { length }}, \frac{\text { dimension }(z)}{\text { dimension }(x) \cdot \text { time }}\right]$,
$A:=\langle 1,-2,0 ;-1,0,1\rangle$

$$
A:=\left[\begin{array}{ccc}
1 & -2 & 0 \tag{4.4.8}\\
-1 & 0 & 1
\end{array}\right]
$$

$C:=\langle-1,0 ; 0,-1\rangle$

$$
C:=\left[\begin{array}{cc}
-1 & 0 \tag{4.4.9}\\
0 & -1
\end{array}\right]
$$

$B:=$ LinearAlgebra:-LinearSolve $(A,-C)$;

$$
B:=\left[\begin{array}{cc}
-t_{1,1} & -1+{ }_{-} t_{1,2} \\
-\frac{1}{2}+\frac{-t_{1,1}}{2} & -\frac{1}{2}+\frac{-t_{1,2}}{2} \\
-t_{1,1} & -t_{1,2}
\end{array}\right]
$$

$B:=\operatorname{eval}(B, \operatorname{indets}(B)=\sim 1)$

$$
B:=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]
$$

$A \cdot B+C$

$$
\left[\begin{array}{ll}
0 & 0 \tag{4.4.12}\\
0 & 0
\end{array}\right]
$$

Units:-TestDimensions $\left(\left(x+y^{2} \cdot d\right) \cdot(z+t x)\right)$;
true

Physics

See the Physics examples help page:

```
>> restart;
    with(Physics);
    Setup(mathematicalnotation = true);
```

['*', `., Annihilation, AntiCommutator, Antisymmetrize, Assume, Bra, Bracket, Check, Christoffel, Coefficients, Commutator, CompactDisplay, Coordinates, Creation, D, Dagger, Decompose, Define, D \(\gamma\), Einstein, EnergyMomentum, Expand, ExteriorDerivative, Factor, FeynmanDiagrams, Fundiff, Geodesics, GrassmannParity, Gtaylor, Intc, Inverse, Ket, KillingVectors, KroneckerDelta, LeviCivita, Library, LieBracket, LieDerivative, Normal, Parameters, PerformOnAnticommutativeSystem, Projector, Psigma, Redefine, Ricci, Riemann, Setup, Simplify, SpaceTimeVector, StandardModel, SubstituteTensor, SubstituteTensorIndices, SumOverRepeatedIndices, Symmetrize, TensorArray, Tetrads, ThreePlusOne, ToFieldComponents, ToSuperfields, Trace, TransformCoordinates, Vectors, Weyl, `^’, dAlembertian, d_, diff, g_, gamma_] [mathematicalnotation $=$ true $]$
Consider two conjugate observables Q, P, and the corresponding Hermitian operators satisfying $[Q, P]_{-}=\mathrm{I} \hbar$.
[> macro (h = `\ℏ) :
$>$ Setup (hermitianoperators $=\{Q, P\}$, $\% \operatorname{Commutator}(Q, P)=I * h$); $\left[\right.$ algebrarules $=\left\{[Q, P]_{-}=\mathrm{I} \hbar\right\}$, hermitianoperators $\left.=\{P, Q\}\right]$
Suppose now that the system where Q and P act is in some state $|\psi\rangle$ normalized to 1 , and set $|\psi\rangle$ as the default state for computing Brackets.
> Ket(psi);

$$
\begin{array}{ll}
\text { Dagger }(\%)=\text { Bra(psi); } & |\psi\rangle \\
\text { Bra(psi). Ket(psi); } & \langle\psi|=\langle\psi| \\
\text { Bracket(psi, psi); } & \langle\psi \mid \psi\rangle \\
\text { Setup (Bracket(psi, psi) }=1, \text { bracketbasis = psi); } \\
\qquad \begin{array}{ll}
\text { Bracketbasis }=\psi, \text { bracketrules }=\{\langle\psi \mid \psi\rangle=1\}]
\end{array}
\end{array}
$$

[We now have:
> Ket(psi);

$$
\begin{equation*}
|\psi\rangle \tag{4.5.8}
\end{equation*}
$$

$$
\begin{equation*}
1 \tag{4.5.9}
\end{equation*}
$$

The mean values of the operators Q and P in the state $|\psi\rangle$ are then given by:
Qm := Bracket (Q) ; \#Shortcut for Bracket(psi, Q, psi) after having set the bracketbasis to psi

$$
\begin{equation*}
Q m:=\langle Q\rangle \tag{4.5.10}
\end{equation*}
$$

$$
\begin{equation*}
P m:=\langle P\rangle \tag{4.5.11}
\end{equation*}
$$

$>$ Pm := Bracket (P);

Let's introduce another Hermitian operator, Δ, and denote $\Delta(Q)$ and $\Delta(P)$ the operators representing the observable deviations from these mean values by $\langle Q\rangle$ and $\langle P\rangle$.

```
> Setup(hermitianoperators = Delta);
    [hermitianoperators ={\Delta,P,Q}]
DefDQ := Delta(Q) = Q - Bracket(Q);
    DefDQ:=\Delta(Q)=Q-\langleQ\rangle
    > DefDP := Delta(P) = P - Bracket(P);
    DefDP:=\Delta(P)=P-\langleP\rangle
```

The value of the Commutator between $\Delta(Q)$ and $\Delta(P)$ is a consequence of the value of the Commutator between Q and P, and so it can be computed by rewriting the deviations in terms of Q and P.
$>$ \%Commutator (Delta (Q), Delta (P));

$$
\begin{equation*}
[\Delta(Q), \Delta(P)]_{-} \tag{4.5.15}
\end{equation*}
$$

$>$ eval (\%, \{DefDQ, DefDP\});

$$
\begin{equation*}
[Q-\langle Q\rangle, P-\langle P\rangle]_{-} \tag{4.5.16}
\end{equation*}
$$

[> expand (\%);

$$
\begin{equation*}
Q P-P Q \tag{4.5.17}
\end{equation*}
$$

$\stackrel{\text { / }}{ }$ Simplify $(\%)$;

$$
\begin{equation*}
\mathrm{I} \hbar \tag{4.5.18}
\end{equation*}
$$

$\stackrel{=}{7}$ eval (Commutator (Delta (Q), Delta (P)), \{DefDQ, DefDP\});
I \hbar
Track this result as an algebra rule, so that in what follows we compute directly with $\Delta(Q)$ and $\Delta(P)$.
$\gg \operatorname{Setup}((4.5 .15)=(4.5 .19)) ;$

$$
\begin{equation*}
\left[\text { algebrarules }=\left\{[Q, P]_{-}=\mathrm{I} \hbar,[\Delta(Q), \Delta(P)]_{-}=\mathrm{I} \hbar\right\}\right] \tag{4.5.20}
\end{equation*}
$$

$\left[\right.$ To show now that $[Q, P]_{-}=\mathrm{I} \hbar$ implies $\frac{\hbar^{2}}{4} \leq\left\langle\Delta(P)^{2}\right\rangle\left\langle\Delta(Q)^{2}\right\rangle$, consider the action of these deviation operators $\Delta(Q)$ and $\Delta(P)$ on the state of the system $|\psi\rangle$, and construct with them a new Ket involving a real parameter λ.
[> Ket(Psi, lambda) $:=($ Delta (Q) + I*lambda*Delta(P)) . Ket(psi)

$$
\begin{equation*}
\left|\Psi_{\lambda}\right\rangle:=\Delta(Q) \cdot|\psi\rangle+\mathrm{I} \lambda(\Delta(P) \cdot|\psi\rangle) \tag{4.5.21}
\end{equation*}
$$

The square of the norm of $\left|\Psi_{\lambda}\right\rangle$, for λ real, is
Dagger (\%) . \% assuming lambda::real;

$$
\begin{equation*}
\left\langle\Delta(P)^{2}\right\rangle \lambda^{2}-\mathrm{I}\langle\Delta(P) \Delta(Q)\rangle \lambda+\mathrm{I} \lambda\langle\Delta(Q) \Delta(P)\rangle+\left\langle\Delta(Q)^{2}\right\rangle \tag{4.5.22}
\end{equation*}
$$

Simplify this norm, taking into account the commutator $[\Delta(Q), \Delta(P)]_{-}=\mathrm{I} \hbar$, set in (4.5.20)
Simplify (\%) ;

$$
\begin{equation*}
-\hbar \lambda+\left\langle\Delta(P)^{2}\right\rangle \lambda^{2}+\left\langle\Delta(Q)^{2}\right\rangle \tag{4.5.23}
\end{equation*}
$$

[This is a polynomial in λ of second degree; its discriminant is negative or zero.
$>$ discrim(\%, lambda) $<=0$;

$$
\begin{equation*}
\hbar^{2}-4\left\langle\Delta(P)^{2}\right\rangle\left\langle\Delta(Q)^{2}\right\rangle \leq 0 \tag{4.5.24}
\end{equation*}
$$

$\left[\right.$ isolating $\frac{\hbar^{2}}{4}$, we obtain the lower bound for $\left\langle\Delta(P)^{2}\right\rangle\left\langle\Delta(Q)^{2}\right\rangle$.
> isolate (\%, h^2) / 4;

$$
\begin{equation*}
\frac{\hbar^{2}}{4} \leq\left\langle\Delta(P)^{2}\right\rangle\left\langle\Delta(Q)^{2}\right\rangle \tag{4.5.25}
\end{equation*}
$$

Note that this result is a consequence of $[\Delta(Q), \Delta(P)]_{-}=\mathrm{I} \hbar$, which in turn is a consequence of $[Q, P]_{-}=\mathrm{I} \hbar$, so that Q and P too satisfy $\frac{\hbar^{2}}{4} \leq\left\langle P^{2}\right\rangle\left\langle Q^{2}\right\rangle$, and in fact the product of any two conjugate Hermitian operators, as well as of the root-mean square deviations of them, satisfy this inequality.

