
DIANA-HEP
Advisory Board Meeting - Princeton

Peter Elmer, David Lange, Jim Pivarski

January 26, 2017



Peter Elmer David Lange Jim Pivarski



Broad range of related software projects
● In the scientific Python ecosystem

○ Scikit-HEP
○ Python toolkit in CMS
○ pip-based package management

software as a 
research project

collaboration performance interoperability reproducibility training

● In the Spark ecosystem
○ Porting analyses to Apache Spark
○ Spark-ROOT

● Novel analysis tools
○ Histogrammar
○ Femtocode

● Training
○ Evangelizing use of Python, Pandas, Scikit-Learn, Jupyter (David)
○ Talks/tutorials on Spark, TensorFlow, and “Big Data” (Jim) training

software as a 
research project collaboration performance interoperability reproducibility

collaboration performance interoperability reproducibility

collaboration interoperability reproducibility

interoperability



Distribution of interests
● Many different projects, all related 

and reinforcing one another.

● Diverse research directions, 
following best practices for R&D.

● Team emphasis on outside 
connections. Want to establish 
software development 
communities.



Collaboration within and outside of DIANA-HEP
DIANA-HEP collaborators

● Scikit-HEP:
Eduardo (Cincinnati)

● Analysis language paper: 
Brian (Nebraska)

● HistFitter/Histogrammar: 
Kyle, Lukas (NYU)

Outside collaborators

● Scikit-HEP: Noel Dawe (Melbourne), Vanya Belyaev (ITEP), 
Sasha Mazurov (Birmingham)

● CMS Big Data: Oliver Gutsche, Matteo Cremonesi, Nhan Tran, 
Jim Kowalkowski, Saba Sehrish (Fermilab)

● Spark-ROOT: Viktor Khristenko (Iowa), ROOT Team, CERN IT

● Histogrammar: Alexey Svyatkovskiy (Princeton)

● Femtocode/Fermiscope: Jin Chang, Igor Mandrichenko 
(Fermilab) and Peter Hansen (Minnesota)

● Presentations in industry: Strange Loop, KDD, CHUG
and interactions with: Wes McKinney (Pandas), Julien Le 
Dem (Parquet), Michael Armbrust (SparkSQL)



Descriptions of each 
project



Scikit-HEP
● Collaboration with the authors of rootpy (Noel Dawe)

and Ostap (Vanya Belyaev, Sasha Mazurov), two widely
used Pythonic interfaces to ROOT, RooFit, and RooStats.

● Intended to be a general bridge between HEP software products
and the scientific Python ecosystem: Numpy, Scipy, Scikit-Learn, Keras, etc.

● Not starting from scratch: combining the strengths of rootpy and Ostap with a 
unified software design.

○ Generator, Dataset, Aggregation, Modeling (fitting and machine learning), Visualization.

● Will draw in other packages later, following the model of Astropy.
○ Common definitions and APIs so that existing code can be made to talk to each other.



Spark-ROOT
● Bridge between ROOT and Spark: collections of ROOT

files become a Spark DataFrame.
○ Directly connects HEP data with the Big Data world— everything that has been wired into 

Spark becomes available to physicists: machine learning, in-memory analytics, file formats.
○ Nice match between ROOT concepts and Spark concepts (such as columnar reading).

● Working closely with physicist users, CERN’s IT team (setting up a Spark 
cluster), and the ROOT team.

● Pure-Java reader based on Tony Johnson’s FreeHEP (SLAC) and intensive 
development and testing by Viktor Khristenko (Iowa).

● Nearing maturity: reading complex events from HDFS and EOS, in parallel on 
the CERN-Spark cluster, including real data for two CMS analyses.



Histogrammar
● Started as a way to match Spark’s functional

programming interface (for parallelism) with HEP-style histograms.

● Became a generalization of the concept of histogramming as structured 
aggregation, a language of aggregation primitives that can be combined for 
an open-ended set of tasks.

○ Many analysis tasks that are currently being forced into 1, 2, and 3-dimensional histograms 
can be simplified using Histogrammar.

○ Data collection and plotting in ROOT, Matplotlib, Spark, and GPU environments.
○ Used in two CMS analyses and a political science data mining project (and possibly others).

● Working with Kyle and Lukas to see if Histogrammar could power HistFactory, 
generalizing HistFactory’s abilities and broadening Histogrammar’s impact.



Femtocode query language and Fermiscope service
● Ambitious project to replace private skims with a queryable server.

○ Private skims introduce provenance, version control, and resource use problems.
○ Use of private skims is partly cultural: other fields query from terabytes of data in real time.
○ Orders of magnitude speedup is possible, but requires fundamentally new techniques.

● Inspired by Dremel/Drill, Ibis, Impala, Kudu:
fast SQL engines based on columnar data,
extended for the HEP use case by allowing
complex, structured events.

● Femtocode converts object-oriented queries into vectorized kernel functions,
Fermiscope is a database/cache to keep the most popular columns in memory.

● Fermiscope development: Jin Chang and Igor Mandrichenko (FNAL LDRD).



Engaging user 
communities



Developing an “evangelization plan”
● Scikit-HEP: rootpy and Ostap 

have active communities; provide 
tutorials for transition. (Original 
packages will be frozen at v1.0.)

● Spark-ROOT: infrastructure 
component; the problem will be 
introducing physicists to Spark 
and its advantages.

● Histogrammar: hard to interest 
physicists as a standalone tool; 
integrating into HistFactory, 
Scikit-HEP, and Femtocode.

● Femtocode/Fermiscope: 
fundamentally new way to get data, 
but simplicity and performance 
should be good selling points.

Engaging users is an important problem and the development of an 
evangelization plan will be a major focus in the next six months.



Plans for the next year



Six and twelve month plans
SIX MONTHS

● Crystalize the design of Scikit-HEP.
● Finalize Spark-ROOT with documentation.
● Attract more HEP analyses to use Spark-ROOT 

and Histogrammar.
● Investigate inclusion of Histogrammar into 

HistFactory and therefore RooFit.
● Develop “demo quality” Femtocode/Fermiscope 

with an emphasis on research.
● Develop a concrete plan for software 

evangelism.

TWELVE MONTHS

● Evangelize Scikit-HEP and Spark-ROOT 
as a starting point for HEP analysis in 
Python and Spark, respectively.

● Fully integrate Histogrammar into 
HistFactory.

● Develop Femtocode/Fermiscope as a 
usable tool with a trial set of users. Further 
development into a production-ready 
system would follow next year (2018).



Backup slides




