Status of hadronic light-by-light scattering and the muon (g-2)

Pere Masjuan Universitat Autònoma de Barcelona

Work done in collaboration with

Pablo Sanchez-Puertas

Outline

- Short Introduction
- Hadronic light-by-light scattering contribution to the muon g-2:
 - its role in the 3σ deviation
 - its framework and reference numbers
 - its new trends
- Outlook

$$\vec{\mu} = \vec{S} \vec{B}$$

spin $\frac{1}{2}$

Frac theory: g=2

Rad. Corr): $g \neq 2$

Deviation fr

Dirac value g=2 is:

The anomalous magnetic moment of the muon: the experiment

The anomalous magnetic moment of the muon: the experiment

$$\omega_c = -\frac{qB}{m\gamma} \qquad \text{cyclotron precession}$$

$$\omega_s = -\frac{gqB}{2m} - (1 - \gamma)\frac{qB}{m\gamma}$$

spin precession (Larmor)

$$\omega_a = \omega_s - \omega_c = -\left(\frac{g-2}{2}\right)\frac{qB}{m} = -a_\mu \frac{qB}{m}$$

The E821 experiment at BNL

Bennet et al, PRD73,072003 (2006)

$$a_{\mu+}^{\text{exp}} = 11659204(6)(5) \times 10^{-10}$$
 [2000]

$$a_{\mu-}^{\text{exp}} = 11659215(8)(3) \times 10^{-10}$$
 [2001]

Assuming CPT invariance

Bennet et al, PRD73,072003 (2006)

$$a_{\mu}^{\text{exp}} = 11659209.1 \underbrace{(5.4)(3.3)}_{(6.3)} \times 10^{-10}$$

The E821 experiment at BNL

$$a_{\mu+}^{\text{exp}} = 11659204(6)(5) \times 10^{-10}$$

$$a_{\mu-}^{\text{exp}} = 11659215(8)(3) \times 10^{-10}$$

Assuming CPT invariance

Bennet et al, PRD73,072003 (2006)

$$a_{\mu}^{\text{exp}} = 11659209.1(6.3) \times 10^{-10}$$

Forthcoming exp: FNAL & J-PARC $\sim 1.6 \times 10^{-10}$

Anomalous magnetic moment a_{μ} (anomaly):

$$g_{\mu} = 2\left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \cdots\right)$$

$$a_{\mu}^{th} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$$

Contribution	Result in power of $\frac{\alpha}{\pi}$
$a_{\mu}^{(2)}$	$0.5\left(\frac{\alpha}{\pi}\right)$
$a_{\mu}^{(4)}$	$0.765857425(17)\left(\frac{\alpha}{\pi}\right)^2$
$a_{\mu}^{(6)}$	$24.05050996(32)\left(\frac{\alpha}{\pi}\right)^3$
$a_{\mu}^{(8)}$	$130.8796(63)(\frac{\alpha}{\pi})^4$
$a_{\mu}^{(10)}$	$753.29(1.04)\left(\frac{\alpha}{\pi}\right)^5$
a_{μ}^{QED}	$11658471.885(4) \times 10^{-10}$

Schwinger 1948

Petermann and Sommerfield 1958

Laporta and Remiddi 1996

Kinoshita et al 2012

Anomalous magnetic moment a_{μ} (anomaly):

$$g_{\mu} = 2 \left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \cdots \right) \qquad a_{\mu}^{th} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$$

$$\frac{\text{Contribution Result in } 10^{-10} \text{ units}}{\text{QED(leptons)}} \qquad \frac{\text{Result in } 10^{-10} \text{ units}}{11658471.885 \pm 0.004} \text{ Kinoshita et } al$$

$$\text{HVP(leading order)} \qquad 690.8 \pm 4.7 \qquad \text{Davier et } al \text{ 20}$$

$$\text{HVP(NLO)} \qquad -9.93 \pm 0.07 \qquad \text{Hagiwara et } al$$

$$\text{HVP(NNLO)} \qquad 1.22 \pm 0.01 \qquad \text{Kurz et } al \text{ 2014}$$

$$\text{HLBL } (+\text{NLO})^* \qquad 11.7 \pm 4.0 \qquad \text{Jegerlehner, N} \qquad \text{Czarnecki 2002, Singularized 2013}$$

$$\text{EW } (2 \text{ loop}) \qquad 15.4 \pm 0.1 \qquad \text{Czarnecki 2002, Singularized 2014}$$

$$* \text{NLO: Colangelo et al 2014}$$

Anomalous magnetic moment a_{μ} (anomaly):

$$g_{\mu} = 2\left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \cdots\right)$$
 $a_{\mu}^{th} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$

Result in 10^{-10} units Contribution

		•
QED(leptons)	11658471.885 ± 0.004	Kinoshita et al 2012, Remiddi
HVP(leading order)	690.8 ± 4.7	Davier et al 2011
HVP(NLO)	-9.93 ± 0.07	Hagiwara et al 2009
HVP(NNLO)	1.22 ± 0.01	Kurz et al 2014
HLBL (+NLO)*	11.7 ± 4.0	Jegerlehner, Nyffeler 2009
${ m EW}$	15.4 ± 0.1	Czarnecki 2003, Gnendinger 2013
Total	11659179.1 ± 6.2	* NI O: Colangelo et al 2014

* NLO: Colangelo et al 2014

Anomalous magnetic moment a_{μ} (anomaly):

$$g_{\mu} = 2 \left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \cdots \right) \qquad a_{\mu}^{th} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$$

$$\frac{\text{Contribution} \quad \text{Result in } 10^{-10} \text{ units}}{\text{QED(leptons)}} \qquad \frac{11658471.885 \pm 0.004}{11658471.885 \pm 0.004} \text{ Kinoshita et al 2012, Remiddi}$$

$$\frac{\text{HVP(leading order)}}{\text{HVP(NLO)}} \qquad \frac{690.8 \pm 4.7}{-9.93 \pm 0.07} \qquad \text{Davier et al 2011}$$

$$\frac{\text{HVP(NNLO)}}{\text{HVP(NNLO)}} \qquad \frac{1.22 \pm 0.01}{1.22 \pm 0.01} \qquad \text{Kurz et al 2014}$$

$$\frac{\text{EW}}{15.4 \pm 0.1} \qquad \frac{11659179.1 \pm 6.2}{\text{Czarnecki 2003, Gnendinger 2013}} \qquad * \text{NLO: Colangelo et al 2014}$$

Anomalous magnetic moment a_{μ} (anomaly):

$$g_{\mu} = 2 \bigg(1 + a_{\mu} = \frac{\alpha}{2\pi} + \cdots \bigg) \qquad a_{\mu}^{th} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$$
 Contribution Result in 10^{-10} units
$$\frac{\text{QED(leptons)}}{\text{QED(leptons)}} \qquad \frac{11658471.885 \pm 0.004}{690.8 \pm 4.7} \qquad \text{Davier et al 2012, Remiddi}$$

$$\frac{\text{HVP(NLO)}}{\text{HVP(NLO)}} \qquad \frac{-9.93 \pm 0.07}{-9.93 \pm 0.07} \qquad \text{Hagiwara et al 2009}$$

$$\frac{\text{HVP(NNLO)}}{\text{HLBL (+NLO)}^*} \qquad \frac{11.2 \pm 0.01}{11.7 \pm 4.0} \qquad \text{Jegerlehner, Nyffeler 2009}$$
 Czarnecki 2003, Gnendinger 2013
$$\frac{\text{Total}}{\text{Total}} \qquad \frac{11659179.1 \pm 6.2}{\text{NLO: Colangelo et al 2014}} \qquad \text{NLO: Colangelo et al 2014}$$

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 28.0(8.8) \times 10^{-10} \Rightarrow 3.2 \,\sigma$$

Anomalous magnetic moment a_{μ} (anomaly):

$$g_{\mu} = 2 \left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \cdots \right) \qquad a_{\mu}^{th} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$$
Contribution Result in 10^{-10} units
$$\overline{QED(leptons)} \quad 11658471.885 \pm 0.004$$
HVP(leading order) 690.8 ± 4.7
HVP(NLO) -9.93 ± 0.07
HVP(NNLO) 1.22 ± 0.01
HVP(NNLO) 1.22 ± 0.01
HLBL $(+NLO)^*$ 11.7 ± 4.0
EW 15.4 ± 0.1
Total 11659179.1 ± 6.2

$$\sim 1.6 \times 10^{-10}$$

Forthcoming exp:

FNAL JPAC

$$\sim 1.6 \times 10^{-10}$$

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 28.0(8.8) \times 10^{-10} \Rightarrow 3.2 \,\sigma$$

Hints to NP

(talk from Stöckinger)

Very different contributions to a_{μ}

M [GeV]

generally:
$$C = \frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}}, \quad \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

classify new physics: *C* very model-dependent Very useful constraints on new physics

Anomalous magnetic moment a_{μ} (anomaly):

Contribution	Result in 10^{-10} units
QED(leptons)	11658471.885 ± 0.004
HVP(leading order)	690.8 ± 4.7
HVP(NLO)	-9.93 ± 0.07
HVP(NNLO)	1.22 ± 0.01
HLBL (+NLO)	11.7 ± 4.0
\mathbf{EW}	15.4 ± 0.1
Total	11659179.1 ± 6.2

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 28.0(8.8) \times 10^{-10} \Rightarrow 3.2 \,\sigma$$

Hadronic Vacuum romanzauom

$$a_{\mu,LO}^{\mathsf{had}} = \frac{1}{4\pi^3} \int_{m_{\pi^0}^2}^{\infty} ds \; K(s) \; \sigma_{\mathsf{had}}(s)$$

Hadronic Vacuum romanzauom

$$a_{\mu,LO}^{\mathsf{had}} = \frac{1}{4\pi^3} \int_{m_{\pi^0}^2}^{\infty} ds \; K(s) \; \sigma_{\mathsf{had}}(s)$$

$$\sigma_{\mathsf{had}}(s) \sim 1/s \quad \& \quad K(s) \sim 1/s$$

Low energy region important! $\sim 1/s^2$

Sum of exclusive σ_{had}

Hadronic contribution of a_{μ}

Hadronic Vacuum Polarization

ρ peak

 $1.0 \; \mathrm{GeV}$

• ρ - ω interference

 ρ, ω

- Contribution to $a_{\mu}(VP)$: 75%
- Larerror from I-2GeV

 Δa_{μ}

PHOTON 17, May 2017

Anomalous magnetic moment a_{μ} (anomaly):

Contribution	Result in 10^{-10} units
QED(leptons)	11658471.885 ± 0.004
HVP(leading order)	690.8 ± 4.7
HVP(NLO)	-9.93 ± 0.07
HVP(NNLO)	1.22 ± 0.01
HLBL (+NLO)	11.7 ± 4.0
\mathbf{EW}	15.4 ± 0.1
Total	11659179.1 ± 6.2

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 28.0(8.8) \times 10^{-10} \Rightarrow 3.2 \,\sigma$$

• BNL E821: $11659209.1(6.3) \times 10^{-10}$

Bennet et al, PRD73,072003 (2006)

• Theory:

Contribution	Result in 10^{-10} units	
QED(leptons)	11658471.885 ± 0.004	NO HLBL
HVP(leading order)	690.8 ± 4.7	I 10 I ILDI
HVP(NLO)	-9.93 ± 0.07	
HVP(NNLO)	1.22 ± 0.01	
HLBL (+NLO)	$\frac{11.7 \pm 4.0}{}$	
\mathbf{EW}	15.4 ± 0.1	
Total	11659179.1 ± 6.2	11659167.4 ± 4.7
$a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}} =$	$= 41.7(7.9) \times 10^{-1}$	$^0 \Rightarrow 5.3\sigma$ (2 σ effect)

• BNL E821: $11659209.1(6.3) \times 10^{-10}$

Bennet et al, PRD73,072003 (2006)

Theory:

Contribution	Result in 10^{-10} units
QED(leptons)	$\overline{11658471.885 \pm 0.004}$
HVP(leading order)	690.8 ± 4.7
HVP(NLO)	-9.93 ± 0.07
HVP(NNLO)	1.22 ± 0.01
HLBL (+NLO)	11.7 ± 4.0
\mathbf{EW}	15.4 ± 0.1
Total	11659179.1 ± 6.2

 11659167.4 ± 4.7

$$a_{\mu}^{
m exp} - a_{\mu}^{
m SM} = 41.7(7.9) imes 10^{-10} \Rightarrow 5.3\,\sigma$$
 (2 σ effect

 $a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = 41.7(7.9)\times 10^{-10} \Rightarrow 5.3\,\sigma \quad {}^{_{\rm (2\sigma\,effect)}}$ Forthcoming FNAL $\sim 1.6\times 10^{-10} \,$ \Rightarrow from 5 σ to 8 σ , w/o HLBL: 5 σ effect

We need to understand such numbers and errors

Hadronic light-by-light scattering in the muon g-2

 $\mu^{-}(p)$

order $O(\alpha^3)$ hadronic contribution

Model at low energies (with exchange of resonances)

Model at high energies (quark-loop)

Ballpark prediction: Order of magnitude?

Hadronic Vacuum Polarization

VS

Hadronic Light-by-Light

$$a_{\mu}^{\text{ferm}}(\text{LO}) = I(m_q) \left(\frac{\alpha}{\pi}\right)^2$$

$$I(m_q) = \int_{4m_q^2}^{\infty} \frac{\rho_q(s)K(s)}{s} ds$$

$$a_{\mu}^{HVP} \sim 690 \times 10^{-10}$$

$$\rho_q(s) = \frac{1}{3}\sqrt{1 - \frac{4m_q^2}{s}} \left(1 + \frac{2m_q^2}{s}\right)$$

 $m_q \sim 0.160 - 0.180 \text{ GeV}$

(Identify the constituent quark mass from HVP)

(see Pivovarov '03)

Quark models for a Ballpark prediction

Hadronic Vacuum Polarization

VS

Hadronic Light-by-Light

$$a_{\mu}^{HLBL}(M(Q)) = \left(\frac{\alpha}{\pi}\right)^{3} N_{c} \left(\sum_{q=u,d,s} Q_{q}^{4}\right) \left[\left(\frac{3}{2}\zeta(3) - \frac{19}{16}\right) \frac{\overline{m_{\mu}^{2}}}{M(Q)^{2}} + \mathcal{O}\left(\frac{m_{\mu}^{4}}{M(Q)^{4}}\log^{2}\frac{m_{\mu}^{2}}{M(Q)^{2}}\right)\right]$$

Laporta and Remiddi 1996

$$a_u^{HLBL} \sim 14 \times 10^{-10}$$

Pivovarov '03

$$a_{\mu}^{HLBL} < 15.9 \times 10^{-10}$$
 Erler and Toledo Sanchez '06

$$m_q \sim 0.160 - 0.180 \text{ GeV}$$

$$a_{\mu}^{HLBL}=11.8-14.8\times 10^{-10}~$$
 Boughezal and Melnikov, 'l l

$$a_{\mu}^{HLBL} = [10.5(2.0) \div 15.0(2.5)] \times 10^{-10}$$
 P.M, Vanderhaeghen 2012

Classification proposal by Eduardo de Rafael '94

Chiral Perturbation Theory counting (p²)+large-Nc counting

Pesudoscalars: numerically dominant contribution (according to most models)

Reference numbers

JN: Jegerlehner and Nyffeler, Phys. Rep. 477 (2009) 1-110

PdRV: Prades, de Rafael, and Vainshtein, arXiv:0901.0306 (Glasgow White Paper)

Reference numbers

JN: Jegerlehner and Nyffeler, Phys. Rep. 477 (2009) I-II0

PdRV: Prades, de Rafael, and Vainshtein, arXiv:0901.0306 (Glasgow White Paper)

- use the same model from Knecht and Nyffeler '01 and inputs for the PS (issue of pion-pole vs pion-exchange, i.e., how to correctly implement QCD constraints)
 - errors summed linearly in JN and in quadrature in PdRV
- lack of systematic error (large-Nc model, see P.M. and Vanderhaeghen '12)
- the model neither reproduce the new experimental data on PSTFF (see P.M in arXiv:1407.4021) nor the $\pi^0 \rightarrow e^+e^-$ (see P. Sanchez-Puertas in arXiv:1407.4021)
- On top, double counting (or correct overlap) + missing pieces (higher states...)
- All in all, need for more calculations, closer to data (if possible)

- Main current strategies
 - Lattice QCD
 - Data driven approaches

- Main current strategies
 - Lattice QCD
 - Data driven approaches

lattice QCD

Blum et al '14,'16,'17

- Next step:
 - physical values
 - larger volume
 - controlled extrapolation to Q²=0

- Main current strategies
 - Lattice QCD
 - Data driven approaches:
 - Dispersion relations for the low-energy region
 - Hadronic models for the different contributions

Dispersion relations for the low-energy region

$$\Pi^{\mu\nu\lambda\sigma}(q_1,q_2,q_3) = i^3 \int d^4x \int d^4y \int d^4z \, e^{-i(x\cdot q_1 + y\cdot q_2 + z\cdot q_3)} \langle 0|T\{j^{\mu}(x)j^{\nu}(y)j^{\lambda}(z)j^{\sigma}(0)\}|0\rangle$$

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{FsQED}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots,$$
(helicity amplitude decomposition)

Colangelo et al, 1402.7081 Vanderhaeghen et al, 1403.7503

- no intermediate states
- all FF are on-shell, off-shell effects are included in subtraction constants

Hadronic models for the different contributions

$$a_{\mu}^{HLBL}\times 10^{11}$$

$oldsymbol{\mu}$						
BPP:	+83(32)	-19(13)	+85(13)	-4(3)	+21(3)	ENJL, '95 '96 '02
HKS:	+90(15)	-5(8)	+83(6)	+1.7(1.7)	+10(11)	LHS, '98 '02
KN:	+80(40)		+83(12)			Large N_c , '02
MV:	+136(25)	0(10)	+114(10)	+22(5)	0	Large N_c , '04
JN:	+116(40)	-19(13)	+99(16)	+15(7)	+21(3)	Large N_c , '09
PdRV:	+105(26)	-19(19)	+114(13)	+8(12)	0	Average, '09
HK:	+107		+107			Holographic QCD, '09
DRZ:	+59(9)		+59(9)			Non-local q.m., '11
EMS:	+107(20)	-19(13)	+90(7)	+15(7)	+21(3)	Padé-data,'12 '12 '13
GLCR:	+118(20)	-19(13)	+105(5)	+15(7)	+21(3)	$R\chi T$, '14

should add the charm-quark contr. $~\sim 2 imes 10^{-11}$

data+systematic error

The role of experimental data

$$a_{\mu}^{HLBL} \times 10^{11}$$

BPP:
$$+83(32)$$
 $-19(13)$
HKS: $+90(15)$ $-5(8)$
KN: $+80(40)$
MV: $+136(25)$ $0(10)$

JN:
$$+116(40)$$
 $-19(13)$
PdRV: $+105(26)$ $-19(19)$

HK:
$$+107$$

DRZ:
$$+59(9)$$

EMS:
$$+107(20)$$
 $-19(13)$ GLCR: $+118(20)$ $-19(13)$

$$+85(13)$$
 $+83(6)$
 $+83(12)$
 $+114(10)$
 $+99(16)$
 $+114(13)$
 $+107$
 $+59(9)$
 $+90(7)$
 $+105(5)$

$$-4(3) +21(3) & ENJL, '95 '96 '02 \\ +1.7(1.7) & +10(11) & LHS, '98 '02 \\ & Large N_c, '02 \\ +22(5) & 0 & Large N_c, '04 \\ +15(7) & +21(3) & Large N_c, '09 \\ +8(12) & 0 & Average, '09 \\ & & Holographic QCD, '09 \\ & Non-local q.m., '11 \\ +15(7) & +21(3) & Padé-data, '12 '12 '13 \\ \end{array}$$

should add the charm-quark contr. $\sim 2 imes 10^{-11}$

+21(3)

 $R\chi T$, '14

+15(7)

The role of experimental data

From Knecht and Nyffeler, '01:

$$a_{\mu}^{HLBL;\pi^{0}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1}+q_{2})^{2}[(p+q_{1})^{2}-m^{2}][(p-q_{2})^{2}-m^{2}]}$$

$$\times \left(\frac{F_{\pi^0 \gamma^* \gamma^*}(q_1^2, (q_1 + q_2)^2) F_{\pi^0 \gamma^* \gamma^*}(q_2^2, 0)}{q_2^2 - M_{\pi}^2} T_1(q_1, q_2; p) \right)$$

Use data from

the pion Transition Form Factor

$$+\frac{F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2)F_{\pi^0\gamma^*\gamma^*}((q_1+q_2)^2, 0)}{(q_1+q_2)^2 - M_{\pi}^2}T_2(q_1, q_2; p)\right)$$

The role of experimental data

The role of experimental data

The role of experimental data

[P.M., Sanchez-Puertas '17]

$$a_{\mu}^{HLBL;\pi^0} = e^6 \int \frac{d^4Q_1}{(2\pi)^4} \int \frac{d^4Q_2}{(2\pi)^4} K(Q_1^2,Q_2^2) \qquad \qquad \text{Using } F_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2)$$

(main energy range from 0 to 1.5 GeV²)

The role of experimental data

Central value:

Model from Knecht and Nyffeler '01 used in reference numbers

$$F_{\pi^0 \gamma^* \gamma^*}^{LMD+V}(q_1^2, q_2^2) = \frac{f_{\pi}}{3} \frac{q_1^2 q_2^2 (q_1^2 + q_2^2) + h_1 (q_1^2 + q_2^2)^2 + h_2 q_1^2 q_2^2 + h_5 (q_1^2 + q_2^2) + h_7}{(q_1^2 - M_{V_1}^2)(q_1^2 - M_{V_2}^2)(q_2^2 - M_{V_1}^2)(q_2^2 - M_{V_2}^2)}$$

Publication:

$$F_{\pi} = 92.4 \text{ MeV}$$
 $m_{\rho} = 769 \text{ MeV}$
 $m_{\rho'} = 1465 \text{ MeV}$
 $h_1 = 0 \text{ (BL limit)}$
 $h_5 = 6.93 \text{ GeV}^4$
 $h_2 = -10 \text{ GeV}^2$

$$a_{\mu}^{\mathrm{HLBL},\pi} = 6.3 \times 10^{-10}$$

The role of experimental data

Central value:

Model from Knecht and Nyffeler '01 used in reference numbers

$$F_{\pi^0\gamma^*\gamma^*}^{LMD+V}(q_1^2,q_2^2) = \frac{f_{\pi}}{3} \frac{q_1^2 q_2^2 (q_1^2 + q_2^2) + h_1 (q_1^2 + q_2^2)^2 + h_2 q_1^2 q_2^2 + h_5 (q_1^2 + q_2^2) + h_7}{(q_1^2 - M_{V_1}^2)(q_1^2 - M_{V_2}^2)(q_2^2 - M_{V_1}^2)(q_2^2 - M_{V_2}^2)}$$

Publication:

$$F_{\pi} = 92.4 \text{ MeV}$$

$$m_{\rho} = 769 \text{ MeV}$$
 $m_{\rho'} = 1465 \text{ MeV}$

$$h_1 = 0$$
 (BL limit)

$$h_5 = 6.93 \text{ GeV}^4$$

$$h_2 = -10 \text{ GeV}^2$$

Preliminary, using new exp data:

$$\Gamma_{\pi^0 \to \gamma\gamma}$$

$$m_{\rho} = 775 \text{ MeV}$$

curvature TFF

$$h_1 = 0$$
 (BL limit)

slope TFF

$$h_2 = -10 \text{ GeV}^2$$

$$a_{\mu}^{\mathrm{HLBL},\pi} = 6.3 \times 10^{-10}$$

$$a_{\mu}^{\mathrm{HLBL},\pi} = 7.5 \times 10^{-10}$$

The role of experimental data

$$+\frac{c_P}{m_P^4}(Q_1^4+Q_2^4)+\frac{a_{P;1,1}}{m_P^4}Q_1^2Q_2^2+\ldots\bigg)$$

[P.M., Sanchez-Puertas '17]

$F_{\mathrm{P}\gamma\gamma^*}(Q^2)|~[\mathrm{GeV}^{-1}]$ 0.15 0.10 0.05 0.00 0.5 1.0 2.0 1.5 [GeV]

<u>Proposal</u>

0.35

- build a sequence of interpolators based on analyticity and unitary of amplitude: **CANTERBURY** approximants

At high energies:
$$\lim_{Q^2\to\infty}F_{P\gamma^*\gamma}(Q^2,0)=P_\infty Q^{-2}+\mathcal{O}(Q^{-4}),$$

$$\lim_{Q^2 \to \infty} F_{P\gamma^*\gamma^*}(Q^2, Q^2) = \frac{P_{\infty}}{3} \left(\frac{1}{Q^2} - \frac{8}{9} \frac{\delta_P^2}{Q^4} \right) + \mathcal{O}(Q^{-6})$$

$$C_1^0(Q_1^2, Q_2^2) = \frac{F_{P\gamma\gamma}(0, 0)}{1 + \frac{b_P}{m_P^2}(Q_1^2 + Q_2^2)},$$

$$C_2^1(Q_1^2,Q_2^2) = \frac{F_{P\gamma\gamma}(0,0)(1+\alpha_1(Q_1^2+Q_2^2)+\alpha_{1,1}Q_1^2Q_2^2)}{1+\beta_1(Q_1^2+Q_2^2)+\beta_2(Q_1^4+Q_2^4)+\beta_{1,1}Q_1^2Q_2^2+\beta_{2,1}Q_1^2Q_2^2(Q_1^2+Q_2^2)}.$$

The role of experimental data

[P.M., Sanchez-Puertas '17]

Using largest set ever:

- Space-like region

$$e^+e^- \rightarrow e^+e^-P$$

[L3,CLEO,CELLO,BABAR,BELLE]

- Time-like region

$$P \to \ell^+ \ell^-$$

$$P \to \ell^+ \ell^- \gamma$$

[NA48,A2,NA62+PDG]

$$P = \pi^0, \eta, \eta'$$
$$\ell = e, \mu$$

[13 different coll.]

$$a_{\mu}^{\rm HLBL,\pi^0} = 81.8(1.7)[4.0] \cdot 10^{-11}$$
 + $a_{\mu}^{\rm HLBL,\eta} = 27.1(1.8)[2.2] \cdot 10^{-11}$
$$a_{\mu}^{\rm HLBL,\eta'} = 26.3(1.1)[4.6] \cdot 10^{-11}$$

$$a_{\mu}^{\rm HLbL;P} = 135(11) \times 10^{-11}$$
 adding the rest from Glasgow Consensus
$$a_{\mu}^{\rm HLbL} = 126(25) \times 10^{-11}$$
 vs
$$a_{\mu}^{\rm HLBL,GC} = 105(26) \cdot 10^{-11}$$

Anomalous magnetic moment a_{μ} (anomaly):

Contribution	Result in 10^{-10} units
QED(leptons)	11658471.885 ± 0.004
HVP(leading order)	690.8 ± 4.7
HVP(NLO)	-9.93 ± 0.07
HVP(NNLO)	1.22 ± 0.01
HLBL (+NLO)	12.6 ± 2.9
\mathbf{EW}	15.4 ± 0.1
Total	11659182.0 ± 5.5

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 27.1(8.4) \times 10^{-10} \Rightarrow 3.2 \,\sigma$$

Outlook

- The reference numbers seem robust but...
- Still we need to understand the role of new and forthcoming data
 - decay constants, masses, form factors, rescattering
 - together with systematics (chiral and large-Nc)
- Ballparks show large numbers
- Lattice QCD is promising, still long way
- Still missing contributions: need more data on $\gamma\gamma$ hadrons (t-channel), and @mid-large energies

Thank you!

Hadronic Vacuum Polarization

- KLOE and BABAR dominates the world average
- Uncertainty of both measurements smaller than 1%
- Systematic difference
- Difference \rightarrow large uncertainty in $a_{\mu}(VP)$
- New measurement at BES-III lies in the middle, but shorter energy range (and lack of very-low energy region)

The role of experimental data

[P.M., Sanchez-Puertas '17]

Test with Toy models:

-									
	Regge Model				Log Model				
	C_1^0	C_2^1	C_3^2	C_4^3	(C_1^0	C_2^1	C_3^2	C_4^3
LE	55.2	59.7	60.4	60.6	5	6.7	64.4	66.1	66.8
OPE_0	65.7	60.8	60.7	60.7	6	5.7	67.3	67.5	67.6
OPE_1	_	60.6	60.7	60.7	6	5.7	67.3	67.5	67.6
OPE_2	_	60.8	60.7	60.7	6	5.7	67.3	67.5	67.6
Fact	54.6	57.3	57.4	57.5	5	4.6	60.3	61.3	61.6
$\mathrm{Fit}^{\mathrm{OPE}}$	66.3	62.7	61.1	60.8	7	9.6	71.9	69.3	68.4
Exact	60.7				67.6				

Regge Model:

$$F_{\pi^0 \gamma^* \gamma^*}^{\text{Regge}}(Q_1^2, Q_2^2) = \frac{F_{\pi^0 \gamma^* \gamma^*}}{\psi^{(1)}(M^2/a)} \times \sum_{m=0}^{\infty} \frac{a^2}{(Q_1^2 + (M^2 + ma))(Q_2^2 + (M^2 + ma))}.$$

Log Model:

$$F_{\pi^0 \gamma^* \gamma^*}^{\log}(Q_1^2, Q_2^2) = \frac{F_{P\gamma\gamma}}{M^2} \int_0^1 dx \frac{1}{xQ_1^2 + (1-x)Q_2^2 + M^2}$$
$$= \frac{F_{P\gamma\gamma}M^2}{Q_1^2 - Q_2^2} \ln\left(\frac{1 + Q_1^2/M^2}{1 + Q_2^2/M^2}\right),$$

Observations:

- pattern of convergence
- better than factorization
- better than imposing high-energy alone