Photon-photon measurements in CMS

Ruchi Chudasama

On behalf of the CMS collaboration

Photon 2017: International Conference on the Structure and the Interaction of the Photon

Outline

- Photon photon interactions at the LHC CMS detector
- → Exclusive $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ and exclusive $\gamma\gamma \rightarrow e^{+}e^{-}$ in pp collisions at 7 TeV
- \rightarrow Exclusive $\gamma\gamma \rightarrow W^+W^-$ in pp collisions at 7 and 8 TeV
- → Exclusive diphoton production:
 - \rightarrow Searches for central exclusive pp \rightarrow gg \rightarrow p $\gamma\gamma$ p at 7 TeV
 - \rightarrow Searches for Light-by-light scattering in PbPb \rightarrow Pb $\gamma\gamma$ Pb at 5.02 TeV
- Summary

(Central exclusive backgrounds):

Exclusive photon-photon interactions

- → Ultraperipheral (e.m.) collisions (UPCs) without hadronic overlap: $b_{min} > R_A + R_B$
- → Coherent e.m. field of Z proton(s) = Weizsäcker-Wiliams equivalent photon spectrum.
- → Photon flux Z², cross-section enhanced by Z⁴ in AA
- → Quasi-real photons, coherent emission from all subcharges (p,q) Q ~ 1/R ~ 0.06 GeV (Pb), 0.28 GeV (p). Produced central system at ~rest (pT~0)
- → Maximum γ energies (LHC): $ω < ω_{max} ≈ \frac{γ}{R} \sim 80$ GeV (Pb), ~ 2.5 TeV (p)

- → Exclusive production:
 - → No other particles in the final state.
 - → Intact protons (ions) in the final states.

 (Semi-exclusive: if proton(ion) p*(Pb*) dissociate).

 Ruchi Chudasama (BARC, Mumbai)

The CMS Experiment

Exclusive $\gamma\gamma$ production of muon pairs in pp at 7 TeV

- Exclusive μ⁺μ⁻ events compared to precision
 QED predictions (with and without proton dissociation)
- Provides an excellent control sample for photon fluxes and cross-sections for other exclusive processes
- → 2011 pp collision data at 7 TeV with 40pb⁻¹
- Two opposite-charge muons with $p_{_{T}}$ (μ) > 4 GeV & $|\eta(\mu)| < 2.1$ from same primary vertex and nothing else in the event (exclusivity).
- → Muon pair invariant mass > 11.5 GeV, to reject $Y \rightarrow \mu^+ \mu^-$
- → **Back-to-back:** $1-|\Delta\phi/\pi| < 0.1$ and $|\Delta p_{_{_{\! T}}}| < 1.0$ GeV
- Contribution from proton-dissociation included

Exclusive $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ cross section at 7 TeV

$$\sigma(pp \to p \mu^+ \mu^- p) = 3.38^{+0.58}_{-0.55} \; (stat.) \pm 0.16 \; (syst.) \pm 0.14 \; (lumi.) \; pb, \; constant \; (lumi.) \; pb, \; const$$

Data-theory signal ratio = $0.83^{+0.14}_{-0.13}~({\rm stat.}) \pm 0.04~({\rm syst.}) \pm 0.03~({\rm lumi.})$

The measured cross-section is consistent with the predicted QED value (LPAIR event generator)

Exclusive $\gamma\gamma \rightarrow e^+e^-$ production at 7 TeV

- → Exclusive e⁺e⁻ events compared to precision QED predictions (with and without proton dissociation)
- → Provides an excellent control sample for photon fluxes and cross-sections for other exclusive processes
- → 2011 pp collision data at 7 TeV with 36pb⁻¹
- ⇒ Electron/positron with $E_{\tau} > 5.5$ GeV & $|\eta| < 2.5$,
- Invariant mass > 11 GeV, to reject Y→ e⁺e⁻

→ Exclusivity:

- No additional tracks in the tracker
- No additional towers above noise threshold in the calorimeters.
- MC predictions include elastic processes and contribution from proton dissociation

Observation of exclusive $\gamma\gamma \rightarrow e^+e^-$ at 7 TeV

- → 17 exclusive or semi-exclusive e⁺e⁻ candidates are observed, with an expected background of 0.85± 0.28 (stat.) events
- → Measurement is consistent with the theoretical QED prediction for the combined elastic and inelastic (=semiexclusive) events: 16.3 ± 1.3 (syst.) pairs.

Exclusive $\gamma\gamma \rightarrow W^+W^-$ production

- → The electro-weak sector of Standard Model predicts QGC
- Any deviation from SM expectations can reveal a sign of new physics
- → The exclusive production of W pairs is sensitive to anomalous quartic gauge couplings (aQGC)
- → Objective: Measure SM cross section and look for aQGC.
- → aQGC are introduced via effective dimension-6 operator Lagrangian

$$\mathcal{L}_{6}^{0} = \frac{-e^{2}}{8} \overline{\frac{a_{0}^{W}}{\Lambda^{2}}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-}$$

$$\mathcal{L}_{6}^{C} = \frac{-e^{2}}{16} \overline{\frac{a_{C}^{W}}{\Lambda^{2}}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} - W^{-\alpha} W_{\beta}^{+})$$

Anomalous coupling constant for quartic vertex Λ : Scale for New Physics

Exclusive $\gamma\gamma \rightarrow W^+W^-$ in CMS

Exclusive production of W pairs

$$pp o p^{(*)}W^+W^-p^{(*)}$$
 (with W o I $^{\! {\scriptscriptstyle {\rm t}}}$ v) $p^{(*)}$: Exclusive + Semiexcl. contributions

- → 2011 pp collision data at 7 TeV with 5.05 fb⁻¹
- → 2012 pp collision data at 8 TeV with 19.7 fb⁻¹
- → Offline exclusive $\gamma \gamma \rightarrow W^+W^-$ signal selection
 - Opposite-sign eμ pair (final state) originating from commom primary vertex
 - No extra tracks at eµ vertex
 to remove inclusive background
 - Invariant mass $(e\mu) > 20$ GeV to get rid of any low mass resonances
 - p_{τ} (e μ) > 30 GeV to suppress DY and $\gamma\gamma \rightarrow \tau^{+}\tau^{-}$
- Proton dissociation from exclusive μμ sample
- ⇒ aQGC searches region: p_{τ} (e μ) > 100 GeV

Exclusive $\gamma \gamma \rightarrow W^+ W^-$ evidence at 7 and 8 TeV

SM signal region : N extra tracks = 0 , $p_{_{T}}(e\mu) > 30 \text{ GeV}$

Cross section times branching fraction

$$\sigma(pp \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) = 2.2^{+3.3}_{-2.0} fb$$

$$\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) = 10.8^{+5.1}_{-4.1}fb$$

SM Prediction : 4.0 ± 0.7 fb

SM Prediction: 6.2 ± 0.5 fb

The observed significance for 7 and 8 TeV combination is 3.4σ

Limits on aQGC at 7 and 8 TeV

- Used shape of p_T (eµ) distribution to search for sign of anomalous quartic gauge couplings. (high-p_T curves in previous slide)
- \rightarrow p_T (eµ) > 100 GeV used at 7 TeV
- → Two bins at 8 TeV 30 < p_T (e μ) < 130 GeV and p_T (e μ) > 130 GeV
- Region outside solid line is excluded at 95% CL.
- → The most stringent limit existing so far on aQGC, two orders of magnitude more stringent than LEP.

Dimension-6 AQGC parameter	7 TeV ($\times 10^{-4} \text{GeV}^{-2}$)	$8 \text{ TeV} (\times 10^{-4} \text{ GeV}^{-2})$	7+8 TeV ($\times 10^{-4} \text{GeV}^{-2}$)
$a_0^{\rm W}/\Lambda^2(\Lambda_{\rm cutoff}=500{\rm GeV})$	$-1.5 < a_0^W/\Lambda^2 < 1.5$	$-1.1 < a_0^W / \Lambda^2 < 1.0$	$-0.9 < a_0^{\rm W}/\Lambda^2 < 0.9$
$a_C^{W}/\Lambda^2(\Lambda_{\text{cutoff}} = 500 \text{GeV})$	$-5 < a_C^W/\Lambda^2 < 5$	$-4.2 < a_C^W/\Lambda^2 < 3.4$	$-3.6 < a_C^W / \Lambda^2 < 3.0$

Searches for central exclusive diphoton production in pp at 7 TeV

→ Background for Light-by-light scattering searches (next slide):

p.Pb

- Exclusive diphoton production is closely related to exclusive Higgs boson production.
- → 2011 pp collision data at 7 TeV with 36 pb⁻¹
- → Two back-to- back photons with E_T > 5.5 GeV & |n| < 2.5 and nothing else in the detector</p>
- → No diphoton events satisfy the selection criteria

An upper limit on the cross section is set at 1.18 pb at 95% confidence level

(in agreement with NLO theoretical predictions: Durham model)

Light-by-light scattering in PbPb collisions

Elastic light-by-light (LbyL) scattering, fundamental quantum-mechanical process with a tiny cross section, experimentally unobserved so far (recent ATLAS 4σ evidence)

 \Rightarrow Study of $\gamma\gamma \to \gamma\gamma$ at high invariant mass: Neat channel to study anomalous gauge couplings, search for virtual contributions from BSM charged particles (SUSY, monopoles, axions,...)

- → Central exclusive production generated with SUPERCHIC: N CEP-qq ~ 6 counts expec.
- → QED generated with STARLIGHT,N_{QED ee} ~ 15 expected after all cuts

[D.d'Enterria, G.G. daSilveira PRL111(2013)0804051

Light-by-light signal is clearly observable over the background

Ruchi Chudasama (BARC, Mumbai)

Search for light-by-light scattering in PbPb at 5.02 TeV

- 2015 PbPb data with integrated luminosity: 380 nb⁻¹
- Light by light scattering event signature: Exactly two photons back-to-back within $|\eta| < 2.5$ and nothing else in the detector (tracker $|\eta| < 2.5$, calorimeters $|\eta| < 5$).
- Selection of two exclusive photons events:
 - → Exclusive 2 photon reconstructed
 - → Charged particle veto: No tracks above p_⊤ > 0.1 GeV in tracker
 - → Neutral particle veto: No activity above noise in ECAL, HCAL, HF
- Removal of backgrounds:
 - → QED: No hit in the pixel detector
 - → CEP: Very low acoplanarity($\gamma \gamma$) < 0.01, and $p_{\tau}(\gamma \gamma)$ < 2 GeV

(Badly known CEP x-section in PbPb: we normalized it with data with aco>0.05)

Light-by-light scattering candidate event

Light-by-light MC expectations after cuts

Event selection: $p_{\tau}(\gamma) > 2 \text{ GeV}$, $p_{\tau}(\gamma\gamma) < 2 \text{ GeV}$, aco < 0.01

With current luminosity, we expect ~ 10 exclusive photon pairs, on top of small QED+CEP backgrounds. Data analysis ongoing.

Summary

