PHOTON 2017 CERN May 26th, 2017

Isolated photon, photon+jet and diphoton results in ATLAS

J. Terron (Universidad Aut ´ onoma de Madrid) ´

On behalf of the ATLAS Collaboration

• **Outline**

- [→] **Physics with ^photons**
- [→] **Inclusive ^photon production at** ¹³ **TeV**
- [→] **Photon ⁺ jet(s) production at** 8 **TeV**
- [→] **Photon pair production at** 8 **TeV**
- → **Summary**

Photon production in pp **collisions at LHC**

- **Photon production in** pp **collisions**
- [→] **allows tests of perturbative QCD predictions**
- \rightarrow **provides information** on the proton PDFs
- **Possibilities to study inclusive production of photons or in association with jets**
- **Prompt photons represent ^a cleaner probe of the hard interaction than jet production**
- **Prompt-photon measurements aid searches involving photons or** $E_{\textrm{T}}^{\textrm{miss}}$ **+jets (through ratios** Z **+jets/** γ **+jets)**
- **Diphoton production is of special interest as the major background to** $H \to \gamma\gamma$

Other sources of photons

- **Quarks and gluons are sources of photons**
- [→] **Quarks and ^gluons fragment mostly** $\frac{1}{3}$ **into** pions and, by isospin symmetry, $\frac{1}{3}$ **are** π ⁰**'s, which decay into two ^photons** \Rightarrow γ 's are produced copiously inside jets!

 \Rightarrow **fragmentation function** D_{a}^{γ} $_{\boldsymbol{q}/\boldsymbol{g}}^{\boldsymbol{\gamma}}(\boldsymbol{z},\mu_{\boldsymbol{f}})$

[⇒] **Distinct feature: these ^photons are inside jets, i.e. not isolated!**

- It is essential to require the photon to be isolated. It is achieved by requiring It is essential to require the photon to be isolated. It is achieved by requiring
 $E_T^{iso} \equiv \sum_i E_T^i < E_T^{\rm max}$ with the sum over the particles (except the photon!) inside **a** cone of radius $R = 0.4$ centered on the photon in the $\eta - \phi$ plane
- The isolation requirement suppresses the contribution of photons inside jets: π^0 (as well as other neutral mesons) decays and the fragmentation contribution

Photon isolation in ATLAS

 \bullet $E_T^{iso}(R = 0.4)$ computed **using clusters of calorimeter cells (EM and HAD**) in a cone $R = 0.4$, excluding **the contribution from the photon**

• **Subtraction of the leakage of the photon energy into that cone (few** % **)**

• **The underlying event and pileup (overlapping** pp **interactions in the same/neighbouring bunch crossings)** $\textbf{contribute to } E^{iso}_{\boldsymbol{T}}$: **Subtracted on event-by-event basis using the jet-area method of M. Cacciari et al**

• **After isolation requirement, residual background still expected**

Inclusive photon production at 13 **TeV**

Inclusive isolated-photon production in pp collisions at $\sqrt{s} = 13$ TeV

ATLAS Coll., arXiv:1701.06882, accepted PLB

• **Measurement** of $d\sigma/dE_T^{\gamma}$ in different **ranges in** η^γ for $125 < E^\gamma_T$ $\frac{\gamma}{T} < 1500 \text{ GeV}$ ${\bf u}$ sing ${\cal L}=3.2$ fb $^{-1}$ of pp collision data $\frac{1}{\sqrt{s}} = 13 \text{ TeV}$

• Isolation: $E_T^{\rm iso} < 4.2 \cdot 10^{-3} \cdot E_T^{\gamma} + 4.8 \ {\rm GeV}$

• **The measurement covers more than five orders of magnitude in cross section**

 \bullet $d\sigma/dE_T^{\gamma}$ increases by a factor 2 (10) $E_T^\gamma = 125$ (1000) GeV with respect to at $\Delta T = 120$ (**1**)
at $\sqrt{s} = 8$ TeV

• **Comparison to NLO QCD predictions computed with JetPhox using the MMHT2014 PDFs**

Major experimental uncertainties

- **The uncertainty on the photon energy scale dominates at high** E_{τ}^{γ} $\frac{\gamma}{T}$: 2–5% except for $1.56 < |\eta^{\gamma}| < 1.81,$ where it is $7\text{--}18\%$ (on the cross section)
- The uncertainty in the photon identification represents a significant contribution at low E_T^γ : it increases from 1–2% at 125 GeV to 2–6% at \sim 1 TeV (on the cross section)
- The uncertainty in the correlation between the photon ID variables and the isolation is a significant contribution at low E_T^γ : typically smaller than 2% (on the cross section)

Inclusive isolated-photon cross sections vs NLO QCD

- **NLO QCD predictions underestimate data by up** to $\approx 10\text{-}15\%$
- **Theoretical uncertainty** 10 **-**15% **much larger than experimental uncertainties**
- For E_{m}^{γ} $T_{\rm T}^{\gamma}\lesssim 600$ GeV the measurements are **systematically limited**
- **NLO QCD provides an adequate description of the data within uncertainties**
- **First measurement of inclusive photon production in the new kinematic regime opened** by the LHC at $\sqrt{s} = 13$ TeV
- [GeV] γ E T **predictions (Campbell, Ellis, Williams arXiv:1612.04333)** • **Ready for the comparison to NNLO QCD**

Photon+jet(s) production at 8 **TeV**

Dynamics of γ + jet production in *pp* collisions at $\sqrt{s} = 8$ TeV

- Study of the $\gamma +$ jet dynamics by measuring **the differential cross sections as functions of**
	- \rightarrow **Photon:** E_{τ}^{γ} \bm{T}
	- \rightarrow Leading jet: p_T^{jet1}
	- \rightarrow **Photon+Leading** jet: $m^{\gamma jet1}$, $\cos \theta^*$ where $\cos\theta^*=\tanh\frac{1}{2}$ $\frac{1}{2}(y^{\text{jet1}}-\eta^\gamma)$
	- θ^* = scattering angle in centre-of-mass frame ${\bf for\ 2}\to {\bf 2}$ ${\bf hard\ \, collinear\ \, scattering}$
- 200 300 400 500 600 0.6 • **Measurements in the phase-space region defined** by: E_T^{γ} $T_T^\gamma > 130$ GeV, $|\eta^\gamma| < 2.37$ (excluding the $\text{region 1.37} < |\eta^{\gamma}| < 1.56), p_T^{jet1}$ $\frac{jet1}{T}>100$ GeV, $|y^{\rm{jet1}}|< 4.4$ (anti- k_t algorithm with $R=0.6$), $E_T^{\rm iso}< 10$ GeV and $\Delta R_{\gamma j}>1$
- **Comparison to NLO QCD calculation (JETPHOX) corrected for non-perturbative effects**
- \bullet **Good** description of the measured $d\sigma/dE_T^{\gamma}$ by the NLO QCD calculations
- Looking forward to comparison with NNLO QCD calculations (Campbell, Ellis, Williams arXiv:1703.10109)

Dynamics of γ $+$ jet **production in** pp **collisions**

• **Additional requirements for** $d\sigma/dm^{\gamma-jet1}$ and $d\sigma/d|\cos\theta^*|$ to remove biases due to the cuts on the $\boldsymbol{p_{\text{T}}}$ and rapidity of the leading photon and jet: $|\eta^{\gamma}+y^{jet1}| < 2.37 \;\; , \;\; |\cos \theta^*| < 0.83 \;\; , \;\; m^{\gamma-jet1} > 467 \text{ GeV}$

• In the selected (unbiased) region the angular distribution increases as $|\cos \theta^*|$ increases

• Good description of the data by the NLO QCD calculations within the (small) ρ **)** α *k experimental and theoretical uncertainties* \Rightarrow *validation of the description of the* **dynamics of** γ $+$ jet **production in** pp **collisions** at $\mathcal{O}(\alpha_{em} \alpha_s^2)$ $\left(\begin{matrix} 2 \ s \end{matrix} \right)$

Dynamics of γ $+$ jet **production in** pp **collisions**

• Angular distribution $d\sigma/d|\cos\theta^*$ | **sensitive to the spin of the exchanged (virtual) particle: quark(1/2) vs gluon(1)**

[pb] [*θ

20

ATLAS

 \overline{s} = 8 TeV, 20.2 fb $^{-1}$

 $(LIFTPHOX, D+F)$

 \bullet Data $(x1)$ ϵ NLO QCD $(x1)$

• **Measured angular distribution in regions of photon-jet invariant mass**

 \Rightarrow good description of the data by NLO QCD in shape and normalisation

Data (x2) **WA NLO QCD (x2)**

ATLAS Coll., NPB918 (2017) 257

 \bullet Data (x1) **HH NLO QCD (x1)**

 $pp \rightarrow \gamma + jet + X$

Dynamics of γ $+$ jet **production in** pp **collisions**

• Angular distribution $d\sigma/d|\cos\theta^*$ | **sensitive to the spin of the exchanged (virtual) particle: quark(1/2) vs gluon(1)**

[pb] [*θ

ATLAS

Data (x1) $-$ LO QCD D (x2)

 \overline{s} = 8 TeV, 20.2 fb $^{-1}$

• Measured angular distribution closer to that of direct-photon processes than fragm. \Rightarrow consistent with the dominance of processes in which a virtual quark is exchanged

0 0.2 0.4 0.6 0.8

 $|cos \theta^*|$

 $|cos \theta^*|$

Data (x1) $-$ LO QCD D $(x2)$

 $pp \rightarrow \gamma + jet + X$

0 0.2 0.4 0.6 0.8

 $|cos \theta^*|$

ATLAS Coll., NPB918 (2017) 257

Data (x2) \leftarrow LO QCD D (x4) $-LO$ QCD F (x66)

Dynamics of $\gamma + 2\text{jet}$ **production in** pp collisions

• **First measurement of** $\gamma + 2$ jet **production in** pp collisions at $\sqrt{s} = 8$ TeV: E^{γ}_{τ} $T_T^\gamma > 130$ GeV, p_T^{jet1} $\frac{jet1}{T} > 100 \text{ GeV}$ and p_T^{jet2} $\frac{jet2}{T} > 65~\mathrm{GeV}$

• Measurement of $d\sigma/dp_T^{jet2}$ and angular correlations between the photon and the jets

 $\rightarrow \Delta \phi$ between the photon and subleading jet $(\Delta \phi^{\gamma - jet2})$

 $\rightarrow \Delta \phi$ between the leading and subleading jets $(\Delta \phi^{jet1-jet2})$

• Good description of the data both in shape and normalisation by the NLO QCD **predictions computed with Blackhat**

Dynamics of $\gamma + 2\text{jet}$ **production in** pp collisions

• **Comparison to the predictions of Monte Carlo generators:**

- \rightarrow **PYTHIA:** $2 \rightarrow 2$ **matrix** elements plus parton showers
- \rightarrow **SHERPA:** $2 \rightarrow n$ ($n = 2, ..., 5$) **matrix** elements plus parton showers
- **MC predictions normalised to data: shape comparison only**
- Good description of the data by the SHERPA predictions while PYTHIA fails to describe \boldsymbol{p} the distribution in p_T^{jet2} and the angular correlations
- \Rightarrow Inclusion of higher-order tree-level ME in SHERPA improves description of data significantly

Dynamics of $\gamma + 3\text{jet}$ **production in** pp collisions

Dynamics of $\gamma + 3\text{jet}$ **production in** pp collisions

• **Comparison to the predictions of Monte Carlo generators of PYTHIA** (2 \rightarrow 2 **ME+PS)** and **SHERPA** (2 \rightarrow *n* **ME +PS) normalised to data (shape comparison)**

- **Good description of the data by the SHERPA predictions** while <code>PYTHIA</code> describes poorly the distribution in p_T^{jets} at large values
- [⇒] **Inclusion of higher-order tree-level ME in SHERPA improves description of data significantly**

jet2-jet3

J. Terron´ CERN May 26th, 2017

Photon pair production at 8 **TeV**

Isolated-photon pair production in pp **collisions**

- **Measurements** of the process $pp \rightarrow \gamma\gamma + X$ with the aim **of testing pQCD and understanding the irreducible background to new physics processes involving photons** or $H \to \gamma \gamma$
- **Measurement of differential cross sections** \rightarrow diphoton invariant mass, $m_{\gamma\gamma}$
- \rightarrow **diphoton transverse momentum,** $p_{T,\gamma\gamma}$
- \rightarrow **azimuthal separation in LAB frame,** $\Delta \phi_{\gamma\gamma}$

$$
\rightarrow \cos \theta_{\eta}^* \qquad \rightarrow \phi_{\eta}^* \equiv \tan \left(\tfrac{\pi - \Delta \phi_{\gamma \gamma}}{2} \right) \sin \theta_{\eta}^*
$$

 \rightarrow **transverse** component of $\vec{p}_{T,\gamma\gamma}$ with respect ${\bf t}$ **o** ${\bf thrust~axis}$ $({\bm a_T})$

in the phase-space region defined by: $E_m^{\gamma 1,2}$ $T^{(1,2)}$ $>$ 40(30) GeV, $|\eta^{\gamma}| < 2.37$ (excluding ${\rm the\ region}\ 1.37 < |\eta^{\gamma}| < 1.56$), $\Delta R_{\gamma \gamma} > 0.4$ and $E_T^{iso} < 11~\mathrm{GeV}$

Isolated-photon pair production in pp collisions at $\sqrt{s} = 8$ TeV

- **Comparison to theoretical calculations** • **Fixed-order QCD calculations (NP corrected)** → **2** γ**NNLO program; NNLO calculation of direct-photon contribution (no fragm.)** [→] **DIPHOX program; NLO calculation of direct-photon and fragmentation contributions;** $\mathbf{box\; diagram}\; gg \to \gamma\gamma\; \mathbf{included}$ [→] **RESBOS program; NLO ^plus NNLL resummation** • **New SHERPA (v2.2.1) calculation combining**
- $\rightarrow \gamma \gamma$ and $\gamma \gamma + 1$ p at **NLO**
- $\rightarrow \gamma \gamma + 2p$ and $\gamma \gamma + 3p$ at **LO**
- [→] **parton showers**
- The small contribution from $H \to \gamma \gamma$ is neglected

[⇒] **SHERPA prediction in agreement with data**

Isolated-photon pair production in pp collisions at $\sqrt{s} = 8$ TeV

- **Fixed-order QCD calculations (NP corrected)**
- → **2** γ**NNLO program; NNLO calculation of direct-photon contribution (no fragm.)**
- [→] **DIPHOX program; NLO calculation of direct-photon and fragmentation contributions;** $\mathbf{box\; diagram}\; gg \to \gamma\gamma\; \mathbf{included}$
- [→] **RESBOS program; NLO ^plus NNLL resummation**
- **New SHERPA (v2.2.1) calculation combining**
- $\rightarrow \gamma \gamma$ and $\gamma \gamma + 1$ p at **NLO**
- $\rightarrow \gamma \gamma + 2p$ and $\gamma \gamma + 3p$ at **LO**
- [→] **parton showers**
- The small contribution from $H \to \gamma \gamma$ is neglected

Isolated-photon pair production in pp collisions at $\sqrt{s} = 8$ TeV

ATLAS Coll., arXiv:1704.03839

- \bullet $\Delta\phi_{\gamma\gamma}\sim\pi$ or at low values of $p_{T,\gamma\gamma},$ a_T and ϕ^*_η (soft gluon resummation important): **RESBOS and SHERPA do well**
- NLO QCD calculations without higher order terms (DIPHOX, RESBOS) are insufficient
- **NNLO corrections (2** γ**NNLO) improve the description, but still insufficient**
- **SHERPA predictions agree with the data**

Summary

- Exploration of isolated photon production in pp collisions up to E_T^{γ} \bm{T} ∼ 1 **TeV**
- **Additional experimental information on the gluon density in the proton**
- **Measurement of the dynamics of photon+jet(s) and diphoton production**
- **Understanding** (in **pQCD**) the background to Higgs into $\gamma\gamma$
- **Overall, perturbative QCD succeeds in describing the data!**

The ATLAS detector

• Inner detector (ID): tracking and particle identification in $|\eta| < 2.5$ • **Calorimeters: electromagnetic** (LAr) \rightarrow barrel $|\eta|$ < 1.475, endcap 1.375 < $|\eta|$ < 3.2, **forward** $3.1 < |\eta| < 4.9$; **hadronic** (scintillator/steel, **LAr/Cu, LAr/W)** \rightarrow **barrel** $|\eta| < 0.7$ ϵ **extended** barrel $0.8 < |\eta| < 1.7$, ϵ ndcap $1.5 < |\eta| < 3.2$ and forward $3.1 < |\eta| < 4.9$

Photon reconstruction in the ATLAS LAr Calorimeter

• **Layout of the ATLAS electromagnetic calorimeter (Lead-liquid Argon)**

- \rightarrow **barrel section,** $|\eta| < 1.475$
- \rightarrow **two end-cap sections,** 1.375 $\lt |\eta|$ $\lt 3.2$
- [→] **three longitudinal layers**

[−] **First layer: high granularity in** η **direction, width 0.003-0.006 (except for** $1.4 < |\eta| < 1.5$ and $|\eta| > 2.4$)

[−] **Second layer: collects most of the energy,** granularity 0.025×0.025 in $\eta \times \phi$

- [−] **Third layer: used to correct for leakage**
- **Cluster of EM cells without matching track:**
- [→] **"unconverted" ^photon candidate**
- **Cluster of EM cells matched to pairs of tracks (from reconstructed conversion vertices in the inner detector) or matched to ^a single track consistent with originating from ^a photon conversion**
- [→] **"converted" ^photon candidate**

Photon identification in the ATLAS LAr Calorimeter

• **To discriminate signal vs background: shape variables from the lateral and longitudinal energy profiles of the shower in the calorimeters; "loose" and "tight" identification criteria.**

• **"Loose" identification criteria:**

 \rightarrow leakage $R_{had} = E^{had}_T/E_T$ (1st layer hadronic calorimeter) $\rightarrow R_{\eta}$ $=E^{S2}_{3}$ $_{3\times 7}^{S2}/E_{7\times}^{S2}$ 7 × 7 **;** S 2**=second layer of EM calorimeter** \rightarrow **RMS** width of the shower in η direction in S2

• **"Tight" identification criteria:**

[→] **the requirements applied in "Loose" are tightened** $\to R_\phi$ $=E^{S2}_{\rm ext}$ $\frac{S2}{3\times3}/E_{3\times}^{S2}$ $\bar{3} \bar{\times} \bar{7}$ **and shower shapes in the first layer (to discriminate single-photon** ${\bf shows}$ ${\bf shows}$ ${\bf from}$ ${\bf overlapping}$ ${\bf nearby}$ ${\bf shows}$ ${\bf such}$ ${\bf as}$ $\pi^0 \to \gamma \gamma {\bf in}$ [→] **e.g. asymmetry between the 1st and 2nd maxima in the energy** \mathbf{p} rofile $\mathbf{along}\ \eta\ (S1)$

• **Data-driven measurements of photon identification efficiency for converted and** ${\bf u}$ ${\bf n}$ ${\bf c}$ ${\bf r}$ ${\bf r$ **compared to estimations based on Monte Carlo simulations**

Photon identification efficiency vs pile-up ATLAS Coll., EPJC 76 (2016) 666

CONVERTED PHOTONS UNCONVERTED PHOTONS

• **Comparison of data-driven efficiency measurements for converted and unconverted** photons performed with the 2011 and 2012 datasets as a function of the number of reconstructed primary vertex candidates $(N_{\rm PV}),$ for $|\eta^{\gamma}| < 0.6.$ The 2011 measurements \mathbf{a} re performed with the matrix method for photons with E_{T}^{γ} $T_{\rm T}^{\gamma}>20$ GeV and the 2012 **measurements with the electron extrapolation method for photons with** E_{T}^{γ} $\frac{\gamma}{\rm T} > 30$ GeV.

Photon isolation in ATLAS

- 4000 **event-by-event basis (to avoid the large fluctuations)** \bullet E_T^{iso} is corrected by subtracting the estimated **contributions from the underlying event and pileup; the correction is computed on an using the jet-area method (M. Cacciari et al.)** [⇒] **ambient transverse-energy density** 540 MeV (in $R = 0.4$ cone) for events with at least \bf{p} and \bf{p} and \bf{p} and \bf{p} and \bf{p} **exactly one PV (**+170 **MeV for each extra PV)**
- After the correction the E_T^{iso} distribution **is centered at zero with ^a width of** 1.5 **GeV in simulated signal events**

Background subtraction

- **Residual background still expected even after the tight identification and isolation requirements**
- **A data-driven method necessary to avoid relying on detailed simulations of the background processes**
- **The two-dimensional sideband method:**
- \rightarrow **photon identification** γ_{ID} **v**s E_T^{iso} **plane**

C D

• It is assumed that for background events there is no correlation between γ_{ID} and E_T^{iso}

ID γ

FAIL TIGHT

$$
\tfrac{N_A^{bkg}}{N_B^{bkg}} = \tfrac{N_C^{bkg}}{N_D^{bkg}} \qquad \Rightarrow R_{bkg} \equiv \tfrac{N_A^{bkg} \cdot N_D^{bkg}}{N_B^{bkg} \cdot N_C^{bkg}} = 1
$$

and the effects of the small signal contaminations can be accounted for by using

$$
\frac{N_A - N_A^{sig}}{N_B - \epsilon_B N_A^{sig}} = \frac{N_C - \epsilon_C N_A^{sig}}{N_D - \epsilon_D N_A^{sig}}
$$
 to extract the signal yield N_A^{sig}

 $\mathbf{f}_K \in K$ ($\mathbf{f}_K \in K$ $\mathbf{f}_K = N_K^{sig}/N_A^{sig}, K = B, C, D$) are estimated using MC **samples** of signal \Rightarrow **purity rises from 60%** (E_T^{γ} $\frac{\gamma}{T} \sim 25$ GeV) to 100% (E_T^γ $\frac{\gamma}{T} \sim 300 \text{ GeV}$

Inclusive isolated-photon cross sections vs NLO QCD

• **NLO QCD predictions underestimate data by up** to $\approx 10\text{-}15\%$

- **Theoretical uncertainty** 10 **-**15% **much larger than experimental uncertainties**
- $T_{\rm T}^{\gamma} \lesssim 600$ GeV the measurements are **systematically limited**
- **NLO QCD provides an adequate description of the data within uncertainties**

• **First measurement of inclusive photon production in the new kinematic regime opened** by the LHC at $\sqrt{s} = 13$ TeV

• **Ready for the comparison to NNLO QCD predictions (Campbell, Ellis, Williams arXiv:1612.04333)**

ATLAS Coll., arXiv:1701.06882, accepted PLB

Diphoton: sample composition and experimental uncertainties

ATLAS Coll., arXiv:1704.03839

$\mathbf{Diphoton:}\ E_{T}^{iso}\ \mathbf{distributions}$

Diphoton: sample composition

Diphoton: experimental uncertainties

NLO QCD calculations for inclusive photon production

- **The calculations includes NLO corrections for both direct-photon and fragmentation contributions; beware the components are not distinguishable beyond LO**
- The calculations implement the photon isolation requirement at "parton" level: E_T^{iso} calculated with the (few) final-state partons in the perturbative QCD calculation

NLO QCD calculations for inclusive photon production

$$
\sigma_{pp\to \gamma+{\rm X}}=\sum_{i,j,a}\int_0^1dx_1\ f_{i/p}(x_1,\mu_F^2)\ \int_0^1dx_2\ f_{j/p}(x_2,\mu_F^2)\ \hat{\sigma}_{ij\to \gamma a}+
$$

$$
\sum_{i,j,a,b}\int_{z_{min}}^1dz\ D_a^\gamma(z,\mu_f^2)\ \int_0^1dx_1\ f_{i/p}(x_1,\mu_F^2)\ \int_0^1dx_2\ f_{j/p}(x_2,\mu_F^2)\ \hat{\sigma}_{ij\to ab}
$$

• Using the JetPhox program (S. Catani, M. Fontannaz, J. Ph. Guillet and E. Pilon) with

$$
\rightarrow \mu_R = \mu_F = \mu_f = E_T^{\gamma}
$$
 (nominal)

- [→] **proton PDF set: CT10**
- [→] **fragmentation function: BFG set II**
- [→] **Corrections for hadronisation and underlying event needed**
- **Theoretical uncertainties:**
- \rightarrow terms beyond NLO; varying μ_R, μ_F, μ_f by factors 2 and 1/2 (singly or simultaneously)
- [→] **PDF-induced uncertainties; estimated using set of PDF eigenvectors**
- \rightarrow uncertainty on α_s ; estimated using PDFs in which different values of α_s are assumed
- [→] **uncertainty on non-perturbative correction; estimated with different MCs**

Corrections for non-perturbative effects; photon isolation

φ • **The measurements are corrected for detector effects to the "particle" level** \rightarrow **to** isolated photons, where E_T^{iso} **is calculated using all the final-state particles and the jet-area method is also applied This is performed using MC simulations**

η

• **Corrections for non-perturbative effects (hadronisation and underlying event)**

$$
C_{NP} = \frac{\sigma_{\gamma+X}(\text{MC}, \text{particle - level}, \text{UE})}{\sigma_{\gamma+X}(\text{MC}, \text{parton - level}, \text{no UE})}
$$

 \rightarrow Less dependence on the modelling of the final state by having used the jet-area method to subtract the ''extra'' transverse energy contribution to E_T^{iso}

Impact of inclusive isolated photon measurements at LHC on PDFs

• **Analysis by D. d'Enterria and J. Rojo (NPB860,2012,311)** • **Study of the impact on the gluon density of existing isolated-photon measurements from ^a variety of experiments,** from $\sqrt{s} = 200$ GeV up to 7 TeV [→] **those at LHC are the more constraining datasets** \rightarrow **reduction** of gluon uncertainty up to 20% \rightarrow **localised in the range** $x \approx 0.002$ to 0.05 [⇒] **improved predictions for low mass Higgs production in ^gluon fusion, PDF-induced uncertainty decreased by** 20%

Inclusive isolated-photon production in pp collisions at $\sqrt{s} = 8$ TeV

• **Significant improvement in experimental uncertainties over the previous measurements**

• Good description (in log scale) of the data by NLO QCD calculations using JetPhox

Major experimental uncertainties

• The uncertainty on the photon energy scale* (about 1% except in the region $1.56 < |\eta^{\gamma}| < 1.81$) is dominant at high E_T^{γ} \bm{T} [∗] **(ATLAS Collaboration, Eur. Phys. J. C74 (2014) 3071)**

- The uncertainty on the correlation in the background ($\pm 10\%$) dominates at low E_T^{γ} T **,** \mathbf{b} ut negligible at high $E^{\gamma}_{\mathcal{T}}$ \bm{T}
- The uncertainty on the admixture of direct and fragmentation photons increases at low E_T^{γ} \bm{T}

Inclusive isolated-photon cross sections vs NLO QCD

ATLAS Coll., JHEP 06 (2016) 005

• **Comparison to NLO QCD calculation using the JetPhox program**

- \rightarrow a similar trend is observed at low E_T^{γ} in all $|\eta^{\gamma}|$ regions, the NLO QCD predictions **underestimate the data by** $\approx 20\%$
- \rightarrow the theoretical uncertainty (12-20%) prevents a more precise test of the SM predictions
- **Halving the measured uncertainties compared to previous measurements**
	- [⇒] **useful constraint on proton PDFs once included in ^a ^global fit**