

yy and yp measurements with forward proton taggers in CMS+TOTEM

Jonathan Hollar (LIP) May 23, 2017

1

CMS + TOTEM

- Several joint activities of CMS+TOTEM, of relevance for γγ and γp physics
 - Common data-taking in high-β* LHC runs
 - Common triggers separate data samples merged offline
 - Special optics allows access to low-ξ/low mass processes
 - CT-PPS (CMS TOTEM Precision Proton Spectrometer)
 - Operation at highest LHC intensities
 - Fully integrated DAQ and software
 - Large integrated luminosity for BSM searches and rare SM processes
 - -> main focus of this talk

Prospects for yy physics with proton tagging (I)

- Significant rate of very high energy γγ collisions in pp collisions at the LHC
 - Well beyond energy range of γγ physics at LEP, HERA, Tevatron, RHIC
- Ideal case when forward scattered protons can be detected and matched to the central system
 - Strong background suppression
 - Event-by-event constraints on $\sqrt{s_{\gamma\gamma}}$
 - Reduced theory uncertainties related to dissociation of the protons

CERN-LHCC-2014-021

CT-PPS in 2016

CT-PPS: 2016 configuration

- 2 horizontal Roman Pots in 210m region from IP5, equipped with Si-strips
 - RF shielding for insertion at high luminosity
- 1 cylindrical RP, equipped with fasttiming diamond detectors

CT-PPS: 2016 operations

Original concept: commissioning in 2016, physics data-taking in 2017

- Decision in early 2016 to advance data-taking by 1 year, thanks to use of existing TOTEM Sistrip detectors
- Data acquisition and reconstruction software fully integrated, strip tracking detectors commissioned in a short time
- Total of ~15 fb⁻¹ collected with Si-strip tracking in RPs inserted 15 σ from the beam
- ~2.5fb⁻¹ also together with diamond timing detectors

Alignment procedure

Alignment procedure performed in 2 steps

- 1: Absolute alignment
- 2: Fill-by-fill alignment

٠

- Step 1: Use elastic scattering (pp \rightarrow pp) events, in special alignment runs where both horizontal and vertical RPs approach very close to the beam
 - Step 2: Use inclusive sample of protons triggered by central CMS detectors
 - Match distribution of proton track positions to that of alignment runs

Optics determination

- Final physics variable of interest is the proton momentum loss "ξ"
- Reconstruction from measured RP track position requires precise knowledge of LHC optics & dispersion D_x
 - Standard TOTEM optics matching with elastic events [New J. Phys. 16 (2014) 103041] using measured quadrupole strengths
 - Dispersion calibration using $L_y(x) = 0$ point
 - LHC lattice/optics matching of crossing-angle and quadrupole positions using measured dispersions and the beam position as measured by RPs and BPMs"

- Final result is a (non-linear) calibration of ξ vs. the measured track x position
- Overall ξ resolution of ~5.5%

Putting things together - physics acceptance

2016 optics before TS2 (data-calibrated): $\beta^* = 0.4 \text{ m}, \alpha_X = 370 \mu \text{rad}, \text{ mild orbit bump, RPs} @ 15\sigma$

- Overall acceptance depends on invariant mass and rapidity of the central system
- For 2016 LHC optics before LHC technical stop 2 (late August)
 - Acceptance for seeing both protons at mid-rapidity and m =360GeV-~2TeV
 - Acceptance for seeing 1 proton at lower masses and forward rapidity
- Different acceptance in the final months of 2016 due to change of LHC crossing angle

Physics with 2016 data

$\gamma\gamma \rightarrow \mu\mu$ with forward protons (New)

- Apply all calibrations to analysis of a well-known SM process
- $\gamma \gamma \rightarrow \mu \mu$ with one or both protons intact
 - Single arm events are used to extend acceptance to lower masses
- ξ of the µµ pair can be related to the true ξ of the proton

$$\xi(\mu\mu) = \frac{1}{\sqrt{s}} \times (p_T(\mu_1)e^{\pm\eta(\mu_1)} + p_T(\mu_2)e^{\pm\eta(\mu_2)}),$$

- Backgrounds primarily Drell-Yan or double proton dissociation events
 - Can fake a signal when overlapping with pileup protons or beam background

Event selection and backgrounds

٠

٠

- Data sample based on ~10fb⁻¹ taken with consistent optics collected in 2016 prior to TS2
 - Events selected with $m(\mu\mu)>110$ GeV, above the Z-peak
 - Backgrounds are suppressed by requiring the $\mu\mu$ vertex be separated from other tracks, and the two muons be back to back in ϕ
- Signal candidates required to have $\xi(\mu\mu)$ and $\xi(RP)$ matching within 2σ of resolution
- "Data-driven" estimate of remaining backgrounds, using inclusive $Z \rightarrow \mu\mu$ events in coincidence with pileup/background protons
 - Total background estimate: 1.47 ± 0.06 (stat.) ± 0.52 (syst.)

Observed ξ correlations

- Total of 17 events have $\xi(\mu\mu)$ consistent with RP acceptance
- 12 with matching $\xi(\mu\mu)$ and $\xi(RP)$ (red points)
- Estimated significance for observing 12 events for a background of 1.47 ±0.06 (stat.) ±0.52 (syst.):
 4.3σ

Event properties

•

- Dimuon invariant mass + rapidity consistent with single arm acceptance (yellow bands)
 - No double-tagged events observed (green diamond) - consistent with SM cross section * efficiency

Spectrum extends to m(µµ)=341 GeV

- => Tagged γγ collisions at the EWK scale!
- Several times beyond previous measurements with proton tags

Physics prospects - 2016 data

- Several additional physics topics already planned with 2016 data
- Example search: for γγ→γγ and Neutral quartic gauge couplings (forbidden in SM)

√s = 14 TeV

 $L = 300 \text{ fb}^{-1}$

Excl. background Excl. background μ **= 50** μ **= 50** Expect this channel to provide best = 10⁻¹² GeV-4 = 10⁻¹² GeV-4 sensitivity at LHC = 10⁻¹³ GeV⁻¹ γγ + pile up _ = 10⁻¹³ GeV⁻⁴ Excl. background 0.6 0.8 1.2 1.6 = 10⁻¹² GeV⁻⁴ = 10⁻¹² GeV⁻⁴ ζ₂ = 10⁻¹³ GeV⁻⁴ 10 = 10⁻¹³ GeV⁻⁴ 0.4 0.6 0.8 1.4 1.6 Part of program to explore quartic gauge couplings with photons: $\gamma \gamma \rightarrow \gamma Z$, ýѷ**∨→**ZZ.

Signal

γγ + pile up

 $\gamma\gamma \rightarrow WW$ (with timing detectors)

√s = 14 TeV

 $L = 300 \text{ fb}^{-1}$

γγ + pile up

Outlook for 2017

Outlook for 2017 - detectors

- Several upgrades to detectors ready for the upcoming 2017 LHC run
 - Installation of new 3d Si pixel detector detector packages
 - Increased radiation hardness and granularity for tracking

- Timing detectors: diamond detectors operated already in late 2016
 - Upgraded front end readout electronics, active precision reference clock system for 2017
 - Installation of 1 plane of fast silicon timing technology

Outlook for 2017 - physics acceptance

- Additional Roman Pots at 220m upgraded for high luminosity data taking
 - Used to house new pixel tracking detectors

- With 2017 LHC optics, extends low mass reach for double tagged events to nearly ~300 GeV
 - Improved acceptance for SM calibration processes
 - Similar to acceptance foreseen in CT-PPS TDR

Summary

•

•

- With its 2016 operation, CT-PPS has proven for the first time the feasibility of operating a near-beam proton spectrometer at a high luminosity hadron collider on a regular basis.
 - Safe RP insertions, detector commissioning, full integration of DAQ and reconstruction software established
 - Collected >15fb^{-'} of data in high luminosity runs with good physics acceptance, thanks to the LHC machine/optics experts
- RP alignment and optics corrections derived from alignment runs + inclusive proton samples, based on methods previously used in TOTEM
 - Methods applied to a first analysis of the "standard candle" γγ->μμ process with single proton tagging
 - >4 σ signal for electroweak scale single proton-tagged $\gamma\gamma$ collisions at the LHC

Ref: PPS-17-110, TOTEM-NOTE-2017-003

- Major upgrades to CT-PPS RPs, tracking, and timing detectors after 2016 run
 - Ready for 2017 LHC run!

Extra