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Why exclusive diffractive VM 
(photo)production?

• Unique sensitivity to gluon  distribution of the target: gluon 
density squared.

• Semi-hard scale: can treat perturbatively even in photo-
production for heavier mesons.

• In ep DIS possibility to control the scale through the photon 
virtuality.

• Test the universality of dynamics between different VM.

• Momentum transfer dependence allows to access the impact 
parameter profile of the interaction radius.
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Low x/dipole - type approaches to exclusive VM 
production
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Figure 1: Schematic picture of high energy exclusive J/ production, �⇤p ! J/ p. The

factorised form follows since, in the proton rest frame, the formation time ⌧f ' 2E�/(Q2+M

2
J/ )

is much greater than the cc̄-proton interaction time ⌧int. In the case of the simple two-gluon

exchange shown here, ⌧int ' Rp, where Rp is the radius of the proton.

where ↵0 = 0.06 and W0 = 90 GeV. This slope grows more slowly with W than the formula

used by H1 [7], but is compatible with the HERA data and with the slope and ↵

0 of model

4 of [8] used below in Section 3 to calculate the gap survival probability S

2 in the case of

pp ! p+ J/ + p process measured by LHCb.

Thus it becomes possible, in principle, to extract the gluon density xg(x, Q̄2) directly from

the measured di↵ractive J/ cross section. However, first, let us list the corrections to the

leading order expression. Expression (1) is a simple first approximation, justified in the leading

order (LO) collinear approximation using the non-relativistic J/ wave function. It was shown

by Hoodbhoy [9] that the relativistic corrections to (1), written in terms of the experimentally

measured �ee, are small, ⇠ O(4%), and we neglect them.

We also need to account for the fact that the two exchanged gluons carry di↵erent fractions

x, x

0 of the light-cone proton momentum, see Fig. 1. That is, we have to use the generalised

(skewed) gluon distribution. In our case x

0 ⌧ x ⌧ 1, and the skewing e↵ect can be well

estimated from [2] – the amplitude should be multiplied by

Rg =
22�+3

p
⇡

�(�+ 5
2)

�(�+ 4)
, (4)

where �(Q2) = @ [ln(xg)] /@ ln(1/x) (for a more detailed discussion see [10]). In other words,

in the small x region of interest, we take the gluon to have the form xg ⇠ x

��, where � may

be scale dependent.
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between the gluon PDF found in the analyses of the di↵erent groups is relatively large, and

the uncertainty corridors are big, especially at relatively low scales, Q2 ⇠ 2 � 6 GeV2. On

the other hand, di↵ractive vector meson (J/ , ⌥) production, for which the cross section is

proportional to the square of the gluon distribution, provides important additional information

in just this kinematic region. At the moment, these data have not been included in the global

parton analyses, since (a) strictly speaking the cross section is proportional to the generalised

gluon PDF and not the usual diagonal PDF, and, (b) there are some problems in implementing

the NLO coe�cient function1 corresponding to this process.

The first problem may be solved in the low x region using the Shuvaev transform [2], which

facilitates the relation between the generalised and diagonal PDFs to an accuracy of O(x).

Coming to the second problem, we approximate the NLO corrections to the coe�cient function

by accounting for the explicit kT integration in the last step of the interaction. This is not the

complete NLO contribution, but in this way we are able to include the most important NLO

e↵ect.

The corresponding analysis was performed in 2008, and described in detail in [3]. However

new and more precise data have been published by the HERA experiment H1 [4], and in

addition the LHCb collaboration have recently presented data on exclusive (ultraperipheral)

J/ production [5] which is sensitive to, and enlarges, the low x interval. These pp ! p+J/ +p

data enable us to improve the determination of the gluon, but require an extension of the

theoretical framework and necessitate the inclusion of absorptive corrections.

2 Exclusive J/ production at HERA

We recall the lowest order Feynman diagram for the cross section for the process �⇤p ! J/ p,

shown in Fig. 1. The corresponding expression for the cross section in leading logarithmic (LO)

approximation using the non-relativistic approximation for the J/ meson is [6]

d�

dt
(�⇤p ! J/ p)

���
t=0

=
�eeM

3
J/ ⇡

3

48↵


↵s(Q̄2)

Q̄

4
xg(x, Q̄2)

�2 
1 +

Q

2

M

2
J/ 

!
. (1)

Here �ee is the electronic width of the J/ , and

Q̄

2 = (Q2 +M

2
J/ )/4 , x = (Q2 +M

2
J/ )/(W

2 +Q

2) . (2)

Q

2 is the virtuality of the photon, MJ/ is the rest mass of the J/ , and W is the �⇤p centre-

of-mass energy. Equation (1) gives the di↵erential cross section at zero momentum transfer,

t = 0. To describe data integrated over t, the integration is carried out assuming � ⇠ exp(�Bt)

with B the experimentally measured slope parameter. For J/ we use the W dependent slope

B(W ) = (4.9 + 4↵0 ln(W/W0)) GeV�2
, (3)

1Progress is underway to illuminate certain aspects of the existing NLO calculation [1], and to fix an optimal
factorisation scale sampled by this process �⇤

p ! V p.
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Ryskin; 
Marti,Ryskin,Teubner;

Jones, Martin, Ryskin,Teubner

Lowest order: non-relativistic 
approximation to J/ψ wave 
function 

In principle need to take into 
account skewed gluon 
distribution. 

Effectively, multiplicative factor 
taken into account
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Figure 1: Schematic picture of high energy exclusive J/ production, �⇤p ! J/ p. The

factorised form follows since, in the proton rest frame, the formation time ⌧f ' 2E�/(Q2+M

2
J/ )

is much greater than the cc̄-proton interaction time ⌧int. In the case of the simple two-gluon

exchange shown here, ⌧int ' Rp, where Rp is the radius of the proton.

where ↵0 = 0.06 and W0 = 90 GeV. This slope grows more slowly with W than the formula

used by H1 [7], but is compatible with the HERA data and with the slope and ↵

0 of model

4 of [8] used below in Section 3 to calculate the gap survival probability S

2 in the case of

pp ! p+ J/ + p process measured by LHCb.

Thus it becomes possible, in principle, to extract the gluon density xg(x, Q̄2) directly from

the measured di↵ractive J/ cross section. However, first, let us list the corrections to the

leading order expression. Expression (1) is a simple first approximation, justified in the leading

order (LO) collinear approximation using the non-relativistic J/ wave function. It was shown

by Hoodbhoy [9] that the relativistic corrections to (1), written in terms of the experimentally

measured �ee, are small, ⇠ O(4%), and we neglect them.

We also need to account for the fact that the two exchanged gluons carry di↵erent fractions

x, x

0 of the light-cone proton momentum, see Fig. 1. That is, we have to use the generalised
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factorised form follows since, in the proton rest frame, the formation time ⌧f ' 2E�/(Q2+M
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where ↵0 = 0.06 and W0 = 90 GeV. This slope grows more slowly with W than the formula

used by H1 [7], but is compatible with the HERA data and with the slope and ↵

0 of model

4 of [8] used below in Section 3 to calculate the gap survival probability S

2 in the case of

pp ! p+ J/ + p process measured by LHCb.

Thus it becomes possible, in principle, to extract the gluon density xg(x, Q̄2) directly from

the measured di↵ractive J/ cross section. However, first, let us list the corrections to the

leading order expression. Expression (1) is a simple first approximation, justified in the leading

order (LO) collinear approximation using the non-relativistic J/ wave function. It was shown

by Hoodbhoy [9] that the relativistic corrections to (1), written in terms of the experimentally

measured �ee, are small, ⇠ O(4%), and we neglect them.

We also need to account for the fact that the two exchanged gluons carry di↵erent fractions

x, x

0 of the light-cone proton momentum, see Fig. 1. That is, we have to use the generalised

(skewed) gluon distribution. In our case x

0 ⌧ x ⌧ 1, and the skewing e↵ect can be well

estimated from [2] – the amplitude should be multiplied by

Rg =
22�+3

p
⇡
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2)

�(�+ 4)
, (4)

where �(Q2) = @ [ln(xg)] /@ ln(1/x) (for a more detailed discussion see [10]). In other words,

in the small x region of interest, we take the gluon to have the form xg ⇠ x

��, where � may

be scale dependent.
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Shuvaev,Golec-Biernat,Martin,Ryskin

In the proton rest frame: the formation time 
of dipole is much longer than the interaction 
time with the target. Allows to factorize the 
process.

3



Jones, Martin, Ryskin,Teubner

‘NLO’ improvement:
including transverse momentum 
dependence  in the gluon distribution 
integrated with the hard factor

where M and �ee are the mass and electronic width of the J/ . The kinematic variables are

Q̄

2 = (Q2 +M

2
 )/4 , x = (Q2 +M

2
 )/(Q

2 +W

2) , (2)

and W is the �p centre-of-mass energy. We assume the t dependence to be exponential, i.e.

� = exp(�Bt), where the energy-dependent t slope parameter, B, has the form

B(W ) = (4.9 + 4↵0 ln(W/W0)) GeV�2
, (3)

where the pomeron slope ↵0 = 0.06 GeV�2 and W0 = 90 GeV. Corrections due to the skewing

of the gluons and the real part of the amplitude are included exactly as in [2].

We use kT factorization to obtain a more precise expression than that given in (1). It ac-

counts for the main kinematic corrections to the LO formula and we call it the ‘NLO’ approach.

However it does not include the full NLO corrections in terms of collinear factorization. To

keep the value of kT unchanged we have to account for the fact that no additional gluons with

transverse momentum larger than kT are emitted in the exclusive process by including the

Sudakov factor T ,

T (k2
T , µ

2) = exp
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✓
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, (4)

with T = 1 for k2
T � µ

2; and integrating over the kT of the gluons. That is, we replace the [....]

in (1) by
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Here we have assumed the behaviour of xg(x, k2
T )
p
T to be linear in k

2
T for kT below the infra-

red scale Q0 = 1 GeV. For the scales we choose µ

2 = max(k2
T , Q̄

2) and µ

2
IR = max(Q2

0, Q̄
2).

When evaluating (5) we use a NLO gluon parametrisation of the same form as fitted in [2],

see (6) below. Recall that working in terms of kT factorization we avoid the problem of the

choice of the factorization scale µF , which in the low x region creates a large uncertainty for

the theoretical prediction based on collinear factorization. Here the convergence of the integral

over kT is provided by an explicit form of the ‘hard’ matrix element; that is, by the factor

1/(Q̄2 + k

2
T ) in (5) even without the kinematic cuto↵ which is, strictly speaking, beyond the

leading log approximation.

What additional corrections are there in our calculation of �p ! J/ p? First, there may

be an uncertainty arising from the skewed factor, which accounts for the di↵erence between the

conventional (diagonal) gluon PDF and the generalized (GPD) distribution, arising from the

di↵erent � and J/ masses. As in [2], we use the Shuvaev transform to relate the diagonal PDF

and the GPD. This provides su�cient accuracy, ⇠ O(x), in our low x domain. Next, there may
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Sudakov form factor:

No additional gluons with transverse momenta larger 
than kT are emitted in the process
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t- distribution modeled in this approach:

between the gluon PDF found in the analyses of the di↵erent groups is relatively large, and

the uncertainty corridors are big, especially at relatively low scales, Q2 ⇠ 2 � 6 GeV2. On

the other hand, di↵ractive vector meson (J/ , ⌥) production, for which the cross section is

proportional to the square of the gluon distribution, provides important additional information

in just this kinematic region. At the moment, these data have not been included in the global

parton analyses, since (a) strictly speaking the cross section is proportional to the generalised

gluon PDF and not the usual diagonal PDF, and, (b) there are some problems in implementing

the NLO coe�cient function1 corresponding to this process.

The first problem may be solved in the low x region using the Shuvaev transform [2], which

facilitates the relation between the generalised and diagonal PDFs to an accuracy of O(x).

Coming to the second problem, we approximate the NLO corrections to the coe�cient function

by accounting for the explicit kT integration in the last step of the interaction. This is not the

complete NLO contribution, but in this way we are able to include the most important NLO

e↵ect.

The corresponding analysis was performed in 2008, and described in detail in [3]. However

new and more precise data have been published by the HERA experiment H1 [4], and in

addition the LHCb collaboration have recently presented data on exclusive (ultraperipheral)

J/ production [5] which is sensitive to, and enlarges, the low x interval. These pp ! p+J/ +p

data enable us to improve the determination of the gluon, but require an extension of the

theoretical framework and necessitate the inclusion of absorptive corrections.

2 Exclusive J/ production at HERA

We recall the lowest order Feynman diagram for the cross section for the process �⇤p ! J/ p,

shown in Fig. 1. The corresponding expression for the cross section in leading logarithmic (LO)

approximation using the non-relativistic approximation for the J/ meson is [6]
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Here �ee is the electronic width of the J/ , and

Q̄

2 = (Q2 +M

2
J/ )/4 , x = (Q2 +M

2
J/ )/(W

2 +Q

2) . (2)

Q

2 is the virtuality of the photon, MJ/ is the rest mass of the J/ , and W is the �⇤p centre-

of-mass energy. Equation (1) gives the di↵erential cross section at zero momentum transfer,

t = 0. To describe data integrated over t, the integration is carried out assuming � ⇠ exp(�Bt)

with B the experimentally measured slope parameter. For J/ we use the W dependent slope

B(W ) = (4.9 + 4↵0 ln(W/W0)) GeV�2
, (3)

1Progress is underway to illuminate certain aspects of the existing NLO calculation [1], and to fix an optimal
factorisation scale sampled by this process �⇤

p ! V p.
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Figure 1: Schematic picture of high energy exclusive J/ production, �⇤p ! J/ p. The

factorised form follows since, in the proton rest frame, the formation time ⌧f ' 2E�/(Q2+M

2
J/ )

is much greater than the cc̄-proton interaction time ⌧int. In the case of the simple two-gluon

exchange shown here, ⌧int ' Rp, where Rp is the radius of the proton.

where ↵0 = 0.06 and W0 = 90 GeV. This slope grows more slowly with W than the formula

used by H1 [7], but is compatible with the HERA data and with the slope and ↵

0 of model

4 of [8] used below in Section 3 to calculate the gap survival probability S

2 in the case of

pp ! p+ J/ + p process measured by LHCb.

Thus it becomes possible, in principle, to extract the gluon density xg(x, Q̄2) directly from

the measured di↵ractive J/ cross section. However, first, let us list the corrections to the

leading order expression. Expression (1) is a simple first approximation, justified in the leading

order (LO) collinear approximation using the non-relativistic J/ wave function. It was shown

by Hoodbhoy [9] that the relativistic corrections to (1), written in terms of the experimentally

measured �ee, are small, ⇠ O(4%), and we neglect them.

We also need to account for the fact that the two exchanged gluons carry di↵erent fractions

x, x

0 of the light-cone proton momentum, see Fig. 1. That is, we have to use the generalised

(skewed) gluon distribution. In our case x

0 ⌧ x ⌧ 1, and the skewing e↵ect can be well

estimated from [2] – the amplitude should be multiplied by

Rg =
22�+3

p
⇡

�(�+ 5
2)

�(�+ 4)
, (4)

where �(Q2) = @ [ln(xg)] /@ ln(1/x) (for a more detailed discussion see [10]). In other words,

in the small x region of interest, we take the gluon to have the form xg ⇠ x

��, where � may

be scale dependent.
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Exclusive production of vector mesons in the 
dipole approach ρ,Φ,J/ψ,Υ    production

γ∗

N

p p′

V

Figure 2: Schematic representation of exclusive vector meson production in the dipole model at
small x. A virtual photon fluctuates into a qq̄ pair and interacts with the target(proton). After the
interaction the vector meson V is formed which is measured in the final state. The proton scatters
elastically with some momentum transfer t.

and

FL(Q2, x) =
Q2

4π2αem

∫

d2r

∫ 1

0
dz|ΨL(r, z,Q2)|2σdip(r, x) . (2.2)

The dipole-proton cross section σdip can be obtained from the scattering amplitude by

integrating over the impact parameter b

σdip(r, x) = 2

∫

d2bN(r,b;Y ) , Y = ln 1/x . (2.3)

Since the amplitude N is dimensionless and the integration is over the impact parameter,

the dipole cross section σdip has obviously a dimension of the area. We see therefore that

although the inclusive quantities are sensitive to the size of the interaction area, the details

of the impact parameter profile are not directly accessible through this process.

The quantities Ψ(r, Q2, Y )T/L are the photon wave functions. They describe the dis-

sociation of a photon into a qq̄ pair and can be calculated from perturbation theory. The

photon wave function has the following form for the case of transverse photon polarization

|ΨT (r, z,Q2)|2 =
3αem

2π2

∑

f

e2
f

([

z2 + (1 − z)2
]

Q̄2
fK2

1

(

Q̄fr
)

+ m2
fK2

0

(

Q̄fr
))

, (2.4)

and for longitudinal polarization

|ΨL(r, z,Q2)|2 =
3αem

2π2

∑

f

e2
f

(

4Q2z2(1 − z)2K2
0

(

Q̄fr
))

. (2.5)

In the above equations Q̄2
f = z(1 − z)Q2 + m2

f , where −Q2 is the photon virtuality and

z, (1 − z) are the fractions of the longitudinal momentum of the photon carried by the

quarks. In addition K0,1 are modified Bessel functions of the second kind. The summations

are over the active quark flavors f , of charge ef , and mass mf .

The dipole picture can be also used to compute diffractive processes. Here, we are

interested in the process of the exclusive, diffractive production of the vector-meson γ∗p →

– 4 –

V p′. The amplitude for this process is schematically illustrated in Fig. 2. The virtual

photon still fluctuates into qq̄ pair, which then interacts with the proton and a vector

meson is formed, which is measured in the final state. The proton scatters elastically,

its 4-momentum in the initial state is p and in the final state is p′. The formula for the

amplitude for this process reads

A(x,∆, Q) =
∑

h,h̄

∫

d2r

∫

dzΨh,h∗(r, z,Q2)N (x, r,∆)ΨV
h,h∗(r, z) , (2.6)

where h(h̄) is the helicity of quark (antiquark) and ΨV
h,h̄

is the vector meson wave function.

∆ is the 2-dimensional momentum transfer related to the Mandelstam variable t = −∆2.

The differential cross section for the process is given by

dσ

dt
=

1

16π
|A(x,∆, Q)|2 . (2.7)

The amplitude N (x, r,∆) can be related to the scattering amplitude N(x, r,b) introduced

earlier, the amplitude in the impact parameter representation through the appropriate

2-dimensional Fourier transform

N (x, r,∆) = 2

∫

d2bN(x, r,b) ei∆·b . (2.8)

In this notation the dipole cross section, (compare (2.3)), is

σdip(x, r) = Im iN (x, r,∆ = 0) , (2.9)

which is the expression for the optical theorem for scattering of dipoles.

This process, through its dependence on the momentum transfer t, offers a unique

possibility of constraining the impact parameter profile of the dipole scattering amplitude.

Formulae (2.6) and (2.8) were original expressions derived under the assumption that

the dipole size is much smaller than the proton. In Ref. [28], a correction due to the finite

size of the dipole was calculated. It was shown that in the non-forward case, ∆ ̸= 0, the

amplitude can be written in the similar form as above with the modification of the (2.8)

to include the exponential factor exp(−i(1 − z)r ·∆) in the following way

N (x, r,∆, z) = 2

∫

d2bN(x, r,b) ei∆·(b−(1−z)r) . (2.10)

This modification was included in the calculation [29] and it was shown that it has a non-

negligible effect on cross sections, especially on the values of the BD slope which controls

the t-dependence as a function of the scale Q2 + M2
V .

2.1 Dipole scattering amplitude from impact parameter dependent BK evolu-

tion

The dipole-proton scattering amplitude N(r,b;Y ) at high values of rapidity Y (or small

x) is found from the solution to the nonlinear integro-differential Balitsky-Kovchegov (BK)
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⇤
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0

Figure 1: Schematic picture of the high energy factorized amplitude for photo-production of vector
mesons J/ ,⌥ with zero momentum transfer t = 0. In the high energy limit the amplitude factorizes
into the impact factor for the transition �

⇤ ! J/ ,⌥ (quark-loop), the BFKL-Green’s function (central
blob) and non-perturbative proton impact factor (lower blob).

2 Vector meson production in the high energy limit

In the following we describe the framework on which our study is based on. We study the
process

�(q) + p(p) ! V (q0) + p(p0) , (1)

where V = J/ ,⌥(1S) while � denotes a quasi-real photon with virtuality Q ! 0; W 2 =
(q + p)2 is the squared center-of-mass energy of the �(q) + p(p) collision. Neglecting proton
mass e↵ects, i.e. working in the limit q

2 = 0 = p

2, the following Sudakov decomposition
holds for the final state momenta in the high energy limit W � MV ,

q

0 = q +
M

2
V +�

2

W

2
p+�t p

0 = p+
�

2

W

2
q ��t (2)

with l

2
t = �l2 and lt · p = 0 = lt · q for a generic momentum l. With the momentum transfer

t = (q � q

0)2 = ��

2, the di↵erential cross-section for the exclusive production of a vector
meson can be written in the following form

d�

dt

(�p ! V p) =
1

16⇡

���A�p!V p
T,L (W 2

, t)
���
2
. (3)

where A(W 2
, t) denotes the scattering amplitude for the reaction �p ! V p for color singlet

exchange in the t-channel, with an overall factor W 2 already extracted. Within high energy
factorization i.e. discarding terms ⇠ M

2
V /W

2, this scattering amplitude can be written as a
convolution in transverse momentum space of the universal BFKL Green’s-function, which
achieves a resummation of high energy logarithms lnW 2 to all orders in the strong coupling
constant ↵s, and two process-dependent impact factors which describe the coupling of the
Green’s function to external states, see Fig. 1. In the present case, one of the impact factors

3

This expression can then be used to calculate the BFKL impact factor from the light-front
wave function overlap Eq. (16). In particular we find

=mA�⇤p!V p
T (W, 0) =

Z
d

2r

Z 1

0

dz

4⇡
( ⇤

V )T (r) · �0N (x, r)

= ↵s(M ·Q0)

1
2+i1Z

1
2�i1

d�

2⇡i

1Z

0

dz

4⇡
ĝ
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2

Q

2
0

◆�

. (20)

In the above expression, M and M are the mass-scales introduced in Eq. (7). The scale of
the strong coupling ↵s in Eq. (19), (20) has been set in accordance with the conventions used
in the HERA fit1 [8]. From Eq. (20) we obtain
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d
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1� e
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, (21)

where U(a, b, z) is a hypergeometric function of the second kind or Kummer’s function. Some
useful integrals in the derivation of this result are summarized in the appendix. Expanding
Eq. (20) to NLO in ↵s, it is straightforward to verify that our result is independent of M to
NLO accuracy. Furthermore one can verify that the resummed BFKL eigenvalue Eq. (8) is
furthermore independent of the choice of M up to terms O(↵3

s).

2.3 Real part, phenomenological corrections and integrated cross-sections

Even though the real part of the scattering amplitude is suppressed by powers of ↵s in the
high energy limit, it can still provide a sizable correction to the cross-section and should be
therefore included. In the high energy limit it is possible to obtain this real part from the
imaginary part using dispersion relation. One has
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Eq. (22) is frequently used in the literature in the study of photo-production of vector mesons.
Within our framework we write first the imaginary part of the scattering amplitude as a

1A precise determination of the scale of this running coupling would require the complete NLO corrections
to the impact factor which are currently not available
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This expression can then be used to calculate the BFKL impact factor from the light-front
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In the above expression, M and M are the mass-scales introduced in Eq. (7). The scale of
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where U(a, b, z) is a hypergeometric function of the second kind or Kummer’s function. Some
useful integrals in the derivation of this result are summarized in the appendix. Expanding
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Bautista,Fernandez Tellez, Hentschinski

Dipole amplitude obtained from the BFKL unintegrated 
gluon distribution

virt. photon impact factor Q0/GeV � C
fit 1 leading order (LO) 0.28 8.4 1.50
fit 2 LO with kinematic improvements 0.28 6.5 2.35

Table 1: Parameters of the proton impact factor obtained in [8] through a fit to combined HERA
data

describes the transition � ! V and is characterized by the heavy quark mass mc and mb

respectively, which provide the hard scale of the process. The second impact factor, which
describes the transition p ! p is of non-perturbative origin; it needs to be modeled with free
parameters to be fixed by a fit to data.
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, t), with the real part suppressed by powers of ↵s. Limiting
ourselves for the moment to the dominant imaginary part we find that for the case of zero
momentum transfer, t = ��

2 = 0, the non-perturbative proton impact factor coincides for
this process with the corresponding proton impact factor found in fits to Deep-Inelastic Scat-
tering data. Such a fit of the forward t = 0 proton impact factor has been performed in [7,8]
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The model introduces 2 free parameters plus an overall normalization factor and provides a
Poisson-distribution peaked at q2 = �Q

2
0. Depending on the precise form of the virtual pho-

ton impact factor, two sets of parameters have been determined, which are summarized in
Tab. 1, where for the second fit the leading order virtual photon impact factor has been sup-
plemented with DGLAP inspired kinematic corrections [20]; both fits have been performed
for nf = 4 mass-less flavors.
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4

Vector meson photoproduction impact factor obtained 
from the dipole model in coordinate space

This expression can then be used to calculate the BFKL impact factor from the light-front
wave function overlap Eq. (16). In particular we find
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where U(a, b, z) is a hypergeometric function of the second kind or Kummer’s function. Some
useful integrals in the derivation of this result are summarized in the appendix. Expanding
Eq. (20) to NLO in ↵s, it is straightforward to verify that our result is independent of M to
NLO accuracy. Furthermore one can verify that the resummed BFKL eigenvalue Eq. (8) is
furthermore independent of the choice of M up to terms O(↵3

s).

2.3 Real part, phenomenological corrections and integrated cross-sections

Even though the real part of the scattering amplitude is suppressed by powers of ↵s in the
high energy limit, it can still provide a sizable correction to the cross-section and should be
therefore included. In the high energy limit it is possible to obtain this real part from the
imaginary part using dispersion relation. One has
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Eq. (22) is frequently used in the literature in the study of photo-production of vector mesons.
Within our framework we write first the imaginary part of the scattering amplitude as a

1A precise determination of the scale of this running coupling would require the complete NLO corrections
to the impact factor which are currently not available
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t- distribution modeled in this approach

Meson mf/GeV NT R2/GeV�2
MV /GeV 8R�2

/GeV2 1
4M

2
V /GeV2

J/ mc = 1.27 0.596 2.45 3.097 3.27 2.40
⌥ mb = 4.2 0.481 0.57 9.460 15.38 22.42

Table 2: Parameters of the boosted Gaussian vector meson wave functions for J/ and ⌥ obtained
in [14,16]. The last two columns give the two possible hard scales used in the BFKL analysis.

point is the following expression for the imaginary part of the vector meson photo-production
scattering amplitude [25,26]
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where N (x, r, b) is the dipole amplitude and T, L denotes transverse and longitudinal polar-
ization of the virtual photon respectively and t = ��

2. The overlap between the photon and
the vector meson light-front wave function reads
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where from now on we discard longitudinal photon polarizations since the corresponding wave
function overlap is vanishing in the limit Q ! 0 in which we are working. To keep our result
applicable to the case Q 6= 0, we however keep on using the notation ✏2 ⌘ z(1� z)Q2 +m

2
f ,

with ✏2 = m

2
f for real photons. Furthermore r =

p
r2, while f = c, b denotes the flavor of the

heavy quark, with charge êf = 2/3, 1/3, corresponding to J/ and ⌥mesons respectively. For
the scalar parts of the wave functions �T,L(r, z), we follow closely [14] and employ the boosted
Gaussian wave-functions with the Brodsky-Huang-Lepage prescription [27]. For the ground
state vector meson (1s) the scalar function �T,L(r, z), has the following general form [26,28],

�

1s
T,L(r, z) = NT,Lz(1� z) exp

 
� m

2
fR2

1s

8z(1� z)
� 2z(1� z)r2

R2
1s

+
m

2
fR2

1s

2

!
. (17)

The free parameters NT and R1s of this model have been determined in various studies from
the normalization condition of the wave function and the decay width of the vector mesons.
In the following we use the most recent available values i.e. [14] (for the J/ ) and [16] (for the
⌥) The results are summarized in Tab. 2. In the forward limit t = 0, the entire dependence of
the integrand on the impact parameter b is contained in the dipole amplitude which results
into the following inclusive dipole cross-section,

2

Z
d
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The relation between the latter and an unintegrated gluon density has been worked in [29]
and is given by
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Low x dipole amplitude: including saturation

This modification was included in the calculation [10] and it was shown that it has a non-

negligible effect on cross sections, especially on the values of the BD slope which controls

the t-dependence as a function of the scale Q2 + M2
V .

2.1 Dipole scattering amplitude from impact parameter dependent BK evolu-

tion

The dipole-proton scattering amplitude N(r,b;Y ) at high values of rapidity Y (or small

x) is found from the solution to the nonlinear integro-differential Balitsky-Kovchegov (BK)

evolution equation [12–14, 30]. The BK evolution equation can be represented in the fol-

lowing form:

∂Nx0x1

∂Y
=

∫

d2x2

2π
K(x01, x12, x02;αs,m) [Nx0x2 + Nx2x1 − Nx0x1 − Nx0x2Nx2x1 ] . (2.11)

In the above equation we used the shorthand notation for the arguments of the ampli-

tude Nxixj ≡ N(rij = xi − xj ,bij = 1
2(xi + xj);Y ) which depends on the two transverse

positions xi and xj and on the rapidity Y . The branching kernel K(x01, x12, x02;αs,m)

depends on the dipole sizes involved and contains all information about the splitting of the

dipoles. In addition, it depends on the running coupling αs. The way the strong coupling

runs will be specified later in this work. We have also indicated that the kernel depends

on the infra-red cutoff m which we impose in order to regulate large dipoles.

Eq. (2.11) is a differential equation in rapidity and hence suitable initial conditions need

to be specified at some initial value of rapidity Y = Y0. As in the previous work [31] we are

choosing to use the initial condition in the form of the Glauber - Mueller parametrization

with (most of) the parameters equivalent to those used in Ref. [10]

NGM(r, b;Y = ln 1/x) = 1 − exp

(

− π2

2Nc
r2xg(x, η2)T (b)

)

, (2.12)

with

T (b) =
1

8π
e

−b2

2BG . (2.13)

In formula (2.12) the function xg(x, η2) is the integrated gluon density function and

T (b) is the density profile of the target in transverse space with the extension set by the

parameter BG. The integrated gluon density in (2.12) was also taken from fits performed

in [10]. Scale parameter in the gluon density is set to be η2 = µ2
0 + C2

r2 with parameters µ0

and C = 2 set to obtain the best description of the data. The values of these parameters

are given in Table 1. We use (2.12) as the initial condition at Y0 = ln 1/x0, x0 = 10−2

and evolve the amplitude with the BK equation to obtain the solution at lower values of

x < x0. We also note that the initial condition (2.12) depends only on the absolute values

of the dipole size and impact parameter. A nontrivial dependence on the angle between

vectors r and b is not present in the initial condition, instead being dynamically generated

when the initial condition is evolved with the BK equation.

The BK equation was solved numerically by discretizing the scattering amplitude in

terms of variables (log10 r, log10 b, cos θ), where θ is the angle between the impact parameter
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Motyka,Kowalski,Watt;

Glauber-Mueller parameterization often used; includes nonlinear effects

Can be obtained from low x nonlinear equation: Balitsky - Kovchegov equation
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• Typically BK solved in a local approximation: without 
impact parameter dependence. Successful description 
of variety of data.

• Can be solved ( at least numerically ) relatively easily.

• Generates the saturation scale that divides the dense 
and dilute regime.

Anna Stasto: Exclusive VM (photo)production and low x dynamics

Berger,AS

γ∗

N

p p′

V

Figure 2: Schematic representation of exclusive vector meson production in the dipole model at
small x. A virtual photon fluctuates into a qq̄ pair and interacts with the target(proton). After the
interaction the vector meson V is formed which is measured in the final state. The proton scatters
elastically with some momentum transfer t.

and

FL(Q2, x) =
Q2

4π2αem

∫

d2r

∫ 1

0
dz|ΨL(r, z,Q2)|2σdip(r, x) . (2.2)

The dipole-proton cross section σdip can be obtained from the scattering amplitude by

integrating over the impact parameter b

σdip(r, x) = 2

∫

d2bN(r,b;Y ) , Y = ln 1/x . (2.3)

Since the amplitude N is dimensionless and the integration is over the impact parameter,

the dipole cross section σdip has obviously a dimension of the area. We see therefore that

although the inclusive quantities are sensitive to the size of the interaction area, the details

of the impact parameter profile are not directly accessible through this process.

The quantities Ψ(r, Q2, Y )T/L are the photon wave functions. They describe the dis-

sociation of a photon into a qq̄ pair and can be calculated from perturbation theory. The

photon wave function has the following form for the case of transverse photon polarization

|ΨT (r, z,Q2)|2 =
3αem

2π2

∑

f

e2
f

([

z2 + (1 − z)2
]

Q̄2
fK2

1

(

Q̄fr
)

+ m2
fK2

0

(

Q̄fr
))

, (2.4)

and for longitudinal polarization

|ΨL(r, z,Q2)|2 =
3αem

2π2

∑

f

e2
f

(

4Q2z2(1 − z)2K2
0

(

Q̄fr
))

. (2.5)

In the above equations Q̄2
f = z(1 − z)Q2 + m2

f , where −Q2 is the photon virtuality and

z, (1 − z) are the fractions of the longitudinal momentum of the photon carried by the

quarks. In addition K0,1 are modified Bessel functions of the second kind. The summations

are over the active quark flavors f , of charge ef , and mass mf .

The dipole picture can be also used to compute diffractive processes. Here, we are

interested in the process of the exclusive, diffractive production of the vector-meson γ∗p →

– 4 –
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What about spatial distribution?

• The target has infinite size.
• Local approximation suggests that the system 

becomes more  perturbative as the energy grows.
• But this cannot be true everywhere (IR in QCD)

Impact parameter profile

???

Usual approximation:

N(r,b, Y ) = N(r, Y )
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Solving impact parameter dependent BK equation

Without impact parameter dependence
Dipole amplitude as a function of dipole size(arbitrary units)
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At small values of r shape similar to previous analysis.
Fall-off at large values of r.
Dipole is larger than the target→ it misses the target.

Nonlinear evolution equations in QCD – p.45/50
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s (Y1)Q�1

s (Y2)
Anna Stasto: Exclusive VM (photo)production and low x dynamics
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FIG. 4: Graphs of the scattering amplitude as a function of the dipole size at various constant rapidities for fixed impact
parameter b = 1.0 and angle cos(θ) = 0. Solid lines are for the LO kernel and the dashed lines correspond to the Bessel kernel.
The initial distribution is equivalent for both kernels and is represented by the dotted-dashed line. On the left graph each line
represents a change in two units of rapidity to a maximum of ten and on the right graph each line represents a change in ten
units of rapidity to a maximum of fifty.
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FIG. 5: Graph of scattering amplitude as a function of impact parameter for fixed dipole size r = 1.0. The solution with the
case of the LO kernel is plotted as a solid line and with the modified kernel (13) as a dotted line. The dotted-dashed line on
the left is the initial condition. Each line thereafter represents an increase in rapidity of ten units to a maximum of fifty. Right
plot: the same but for the dipole size r = 0.11 and in logarithmic scale for the amplitude.

B. Impact parameter profile of the scattering amplitude

Dependence of the dipole amplitude on the impact parameter is illustrated in Fig. 5. The leftmost dashed-dotted
line is the initial condition Eq. 5 which has a very steep profile in impact parameter. The evolution of the scattering
amplitude towards large values of impact parameter follows the diffusion of large dipoles. The speed of this evolution
can be extracted numerically and is determined by the expansion of the black disc radius. We will discuss this quantity
in detail in the next section.

Evolution in impact parameter shows a marked change in profile from the steeply falling exponential in the initial
condition. This is better illustrated in right plot in Fig. 5 where we replot the impact parameter using the logarithmic
scale in scattering amplitude. The profile changes from the exponential to a power tail at small scattering amplitudes.
This can be seen as an ’ankle’ in the curves of constant rapidity. The origin of this power-like tail was discussed
in detail in Ref. [41]. These power tails are also present in the modified kernel. In the latter case however there
is a slower evolution of the profile towards the large values of impact parameters. There also exists a nontrivial
angular dependence which is most prominent in the cases of large dipole size or impact parameter but for very specific
configurations. In the case when the dipole size is much smaller or much larger than the impact parameter the solution
does not depend much on the spatial orientation of the dipoles. On the other hand, for the case when the dipole size

Impact parameter profile of the interaction region

• Saturation for small impact parameters
• No saturation for large impact parameters (system is still dilute)
• Initial impact parameter profile is not preserved
• Power tail in b is generated, this is due to perturbative evolution and 

lack of confinement effect.

GM-type initial 
condition

BK-evolved 
impact parameter 

profile

Anna Stasto: Exclusive VM (photo)production and low x dynamics

(arbitrary units)
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FIG. 7: Graphs of scattering amplitude versus dipole size for fixed impact parameter b = 100.0 and various rapidities and
angles. The initial condition is the same in all graphs and it is near zero, each curve represents an increase in ten units of
rapidity to a maximum of fifty. The LO kernel (solid lines) and the Bessel kernel (dotted lines) are plotted on the same graph.

100 101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

Dipole Size: 100.000 | cos(θ): 1.0 , -1.0 | ΔY: 10.0 | max Y: 50.0

Impact Parameter

N
(y

)

(a)cos(θ) = 1.0,−1.0

100 101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

Dipole Size: 100.000 | cos(θ): 0.0 | ΔY: 10.0 | max Y: 50.0

Impact Parameter

N
(y

)

(b)cos(θ) = 0.0

FIG. 8: Graphs of scattering amplitude versus dipole impact parameter for constant dipole size r = 100.0 and various rapidities.
The initial condition is the same in all graphs and it is the steeply falling dotted-dashed curve, which is the same for both the
evolution with LO kernel (solid lines) and the Bessel kernel (dotted lines). Each curve represents an increase in ten units of
rapidity to a maximum of fifty.

C. Saturation Scales

The saturation scale in the impact parameter dependent scenario is again defined by the following equation

⟨N(r = 1/Qs, b, θ, Y )⟩ = κ , (15)

where κ is a constant. In all the following analysis we have set κ = 0.5. It is important to note that, in this case
the form of the amplitude admits two solutions to the above equation. As is evident from Fig. 2 one solution for the
saturation scale is for a larger dipole size and one for a smaller dipole size. The saturation scale Qs always refers
to the solution where the dipole size is smaller. We have found that the slope in rapidity of the saturation scale
Qs increases for low values of rapidities, then reaches an approximately constant value and for ultrahigh rapidities it
starts to decrease. The first effect is caused by the preasymptotic contributions, the latter effect is caused by the finite
size of the grid. We have found that the effects of the grid can be neglected below the rapidities of order ∼ 60. The
saturation scale as a function of the rapidity is shown in left plot in Fig. 10. The solid line shows the calculation in
the case of the LO kernel and the dashed line is for the Bessel kernel. It is clear that, the dependence on the rapidity

Where is impact parameter?
BK equation with impact parameter

dN(b01,x01, Y )
dY

= ᾱs

∫
d2x2 x2

01

x2
20 x2

12

[
N(b01 +

x12

2
,x20, Y )+N(b01 −

x20

2
,x12, Y )

− N(b01,x01, Y ) − N(b01 +
x12

2
,x20, Y )N(b01 −

x20

2
,x12, Y )

]

Difficult problem→ (4 + 1) dimensions.
Integral measure

d2x2 x2
01

x2
20 x2

12

is invariant under rotations in transverse
space

x0,x1,x2 −→ O(φ)x0,O(φ)x1,O(φ)x2

Assume that N(|b|, |r|, θ;Y ) cyllindricaly
symmetric→ (3 + 1).

!

"

b

r   
   

Nonlinear evolution equations in QCD – p.40/50

Kernel does not depend on b, it is in the amplitude (initial conditions)

So far impact parameter in MC: 
Salam;

 Avsar,Gustafson,Lonnblad (DIPSY)

b01 =
x0 + x1

2
x01 = x0 � x1

Amplitude at large b
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rapidity to a maximum of fifty. The LO kernel (solid lines) and the Bessel kernel (dotted lines) are plotted on the same graph.
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C. Saturation Scales

The saturation scale in the impact parameter dependent scenario is again defined by the following equation

⟨N(r = 1/Qs, b, θ, Y )⟩ = κ , (15)

where κ is a constant. In all the following analysis we have set κ = 0.5. It is important to note that, in this case
the form of the amplitude admits two solutions to the above equation. As is evident from Fig. 2 one solution for the
saturation scale is for a larger dipole size and one for a smaller dipole size. The saturation scale Qs always refers
to the solution where the dipole size is smaller. We have found that the slope in rapidity of the saturation scale
Qs increases for low values of rapidities, then reaches an approximately constant value and for ultrahigh rapidities it
starts to decrease. The first effect is caused by the preasymptotic contributions, the latter effect is caused by the finite
size of the grid. We have found that the effects of the grid can be neglected below the rapidities of order ∼ 60. The
saturation scale as a function of the rapidity is shown in left plot in Fig. 10. The solid line shows the calculation in
the case of the LO kernel and the dashed line is for the Bessel kernel. It is clear that, the dependence on the rapidity

Amplitude peaked for r=2b.
Amplitude large for aligned dipole configurations

Angular correlations present in 
the solution

Amplitude larger for aligned 
configurations of the dipole

Could be relevant for the angular 
sensitive observables

Sensitivity through diffractive dijet 
in photoproduction/DIS
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Initial condition and cutoff for large dipoles
At    x0=0.01  use Glauber-Mueller formula:

with parameters from Kowalski, Motyka, Watt

Cutoff:

Need to implement the cutoff to regulate large dipole sizes, 
mimic confinement:

m ' 1/
p

2BG ⇠ 350 MeV
p

2BG ' 2.83 GeV�1

Confinement effects

4

A. Including mass parameters into the evolution

With the inclusion of impact parameter in the BK evolution equation there is a drop of the scattering amplitude
at large dipole sizes. This provides a new region of contribution to the evolution at these large dipole sizes where the
amplitude transistions from full saturation to zero. At these large dipole sizes the specific regularization schemes of
the running coupling play a very large role, this was not a problem without impact parameter because the amplitude
was fully saturated at all large dipole sizes. Full saturation leads to a zero contribution from the BK equation so in
effect the equation without impact parameter dependence had a self-regularizing feature. Without this feature we are
forced to put in a mass scale in order to cut the contribution of the kernel for large dipole sizes. We use not only
the LO kernel but the modified kernel with these cuts and impliment them in various ways both with and without
running coupling.

The difficulty in implimenting a massive cut here is that how to do this is very unclear. All prescriptions for the
mass parameter are put in by hand in order to give the desired effect of cutting the non-perturbative dipoles, not
from a rigorous calculation. It is well known that confininemnt effects have to play a part in these large dipoles but
it is entirely unclear how to transition to this non-perturbative regime or at what scale this occurs at. From the fits
to the data in Sec: IV the mass used here does not seem to be a pion mass or a gluon mass GLUON MASS REFS.
The scale we find is consistent with other works REFS FOR 350MEV and represents some other scale here which is
still unclear.

1. LO Kernel

Massive cuts have been implimented in the LO kernel in three different ways. Here we present the various methods
of cutting the kernel; the effect that each different cut has on the evolution will be discussed in the next section.

The first method that was used is a hard cutoff on the daughter dipoles x02 and x12 where the kernel is zero if
either of these dipole sizes exceed a scale 1

m . Here Nc is the number of colors.

K = dx2
02ᾱs

x2
01

x2
02x

2
12

Θ(
1

m2
− x2

02)Θ(
1

m2
− x2

12) (11)

The LO kernel can be expanded into three terms, one of 1
x2
02

as well as 1
x2
12

and a cross term. Each of these three
contributions to the kernel can have a cut placed on them seperately corresponding to which dipole is present in each
term. Cutting the kernel like this gives additional contributions from regions where x2

02 > 1
m2 yet x2

12 < 1
m2 , making

this prescription a softer cut than the previous (11) as these contributions are non-existant in the previous ’full theta’
cut prescription.

K = dx2
02ᾱs

[
1

x2
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12)
]

(12)

In the same spirit as the previous method of cutting the equation off the kernel can be seperated so the dipole
contributions can be killed off individually, but instead of using a step function bessel functions can be employed.
The substitution 1

x2
02

→ m2K2
1 (mx02) where K1 is the first order modified bessel function of the second kind. This

provides a much smoother cutoff and reduces to the LO Kernel (9) for small dipole sizes.

K = dx2
02ᾱsm

2

[
K2

1 (mx2
02) + K2

1(mx2
12) − 2K1(mx2

02)K1(mx2
12)

x02 · x12

|x02||x12|

]
(13)

All previous cases mentioned were cutting off of a kernel with a fixed coupling ᾱs. Inclusion of the running coupling
has been calculated in [4] and [5]. Both schemes of introducing the running coupling into the LO BFKL kernel
are valid and were reconciled to be equivalent [6]. We choose the scheme of [4] as it was easier to impliment this
numerically. This prescription is however only for LO and in order to evaluate the modified kernel we used an
alternative method of implimenting the running coupling. This alternative ’minimum dipole’ method involves a direct
replacement of αs → αs(min(x2

01, x
2
12, x

2
02)). In various limits the Balitsky prescription does reduce to this minimum

dipole prescription, but there are some regimes where differences can be seen. These differences and specific behaviors
of the Balitsky prescription will be discussed more later in Sec: III A 3. In this paper we use the expression of the
QCD running coupling with a mass parameter µ to regulate the coupling at large (IR) dipoles.
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Sharp cutoff

Smooth cutoff (a la mass in the propagator)

But now how to combine with running coupling?

5

αs(x2) =
1

bln
[
Λ−2

(
1
x2 + µ2

)] (14)

Here b = 33−2nf

12π , nf is the number of active flavors and Λ = .246GeV . The µ parameter effectively freezes the
coupling at a large dipole sizes at αs,freeze = 1

bln[Λ−2µ2] . The values that we chose for the µ as well as the effect of
this parameter on the scattering amplitude and F2 are found in our results section. It is worthwile to note that we
have no factor attached to the term 1

x2 in the coupling as we are following [4]. Others [7] have a C2 term in the 1
x2

term which effectively fits Λ to the data, this will not be done in this analysis.

2. Modified Kernel

The modified kernel (10) can have the same theta function cuts placed on it as (11) and (12). Applying the mass
term in a smoother way as in (13) is not possible with the modified kernel as the opprotunity to apply the substitution
used before does not exist. However as there are already bessel functions in the modified kernel the mass parameter
may be applied directly inside these bessel functions, garnering a similar effect on the behavior of the scattering
amplitude. With this mass parameter the modified kernel becomes
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z
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x02 · x12

x02x12

]
(15)

Application of the mass parameter in this manner again yields a cutoff that is not firm and has a suppression
which bleeds into dipole sizes which are below the scale 1

m2 . This small-dipole suppression slows the evolution greatly,
however as the slowdown in the evolution at small dipoles is from a scale in the large dipole regime which is placed
in the kernel by hand we regard this slowdown as artificial.

3. The Balitsky Prescription

The only implimentation of the running coupling that has comes from calculation that we consider is the one by
Balitsky (16) [4] (as stated early the Kovchegov-Weigert prescription [5] was not used for purely numerical reasons),
as such this kernel and its behavior is of special interest. We can impliment similar cuts to (11 - 13) in this running
coupling scheme (16). These cuts tame the coupling at large dipole sizes and provides some (but not complete)
independence to the IR regulation of the coupling. The entire kernel can be cut with step functions as in (17), but
a naive extention of (12 - 13) cannot be applied to (16) as this leads to regimes where the contribution of the kernel
cause the BK to become unstable.
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The Balitsky kernel (16) has several interesting properties which are difficult to see from an analytic perspective
but come out in the numerics. First it is clear that in various limits the Balitsky kernel reduces to the LO kernel with
a minimum dipole presription, however there are several regimes away from these limits there are contributions which
cause the Balitsky kernel to give a give a markedly slower evolution than the minimum dipole prescription. This is
because in regimes where the emitted dipoles are parallel there are enhancements to both kernels in seperate size
regimes such as in fig:2. In fig:2(a) where x01 splits into x02 and x12 which are oriented π with respect to each other
we have x01 > x02 >> x12 which leads to a greater contribution from the balitsky prescription than the minimum-size

For the actual fit use the simplest sharp cutoff

Need to regulate in the IR region. Non-perturbative problem, introduce 
phenomenological parameter. Calculations very sensitive to it.

Cutoff included both in the evolution kernel and in the GM initial condition.
Refit the inclusive HERA data for F2

This modification was included in the calculation [10] and it was shown that it has a non-

negligible effect on cross sections, especially on the values of the BD slope which controls

the t-dependence as a function of the scale Q2 + M2
V .

2.1 Dipole scattering amplitude from impact parameter dependent BK evolu-

tion

The dipole-proton scattering amplitude N(r,b;Y ) at high values of rapidity Y (or small

x) is found from the solution to the nonlinear integro-differential Balitsky-Kovchegov (BK)

evolution equation [12–14, 30]. The BK evolution equation can be represented in the fol-

lowing form:

∂Nx0x1

∂Y
=

∫

d2x2

2π
K(x01, x12, x02;αs,m) [Nx0x2 + Nx2x1 − Nx0x1 − Nx0x2Nx2x1 ] . (2.11)

In the above equation we used the shorthand notation for the arguments of the ampli-

tude Nxixj ≡ N(rij = xi − xj ,bij = 1
2(xi + xj);Y ) which depends on the two transverse

positions xi and xj and on the rapidity Y . The branching kernel K(x01, x12, x02;αs,m)

depends on the dipole sizes involved and contains all information about the splitting of the

dipoles. In addition, it depends on the running coupling αs. The way the strong coupling

runs will be specified later in this work. We have also indicated that the kernel depends

on the infra-red cutoff m which we impose in order to regulate large dipoles.

Eq. (2.11) is a differential equation in rapidity and hence suitable initial conditions need

to be specified at some initial value of rapidity Y = Y0. As in the previous work [31] we are

choosing to use the initial condition in the form of the Glauber - Mueller parametrization

with (most of) the parameters equivalent to those used in Ref. [10]

NGM(r, b;Y = ln 1/x) = 1 − exp

(

− π2

2Nc
r2xg(x, η2)T (b)

)

, (2.12)

with

T (b) =
1

8π
e

−b2

2BG . (2.13)

In formula (2.12) the function xg(x, η2) is the integrated gluon density function and

T (b) is the density profile of the target in transverse space with the extension set by the

parameter BG. The integrated gluon density in (2.12) was also taken from fits performed

in [10]. Scale parameter in the gluon density is set to be η2 = µ2
0 + C2

r2 with parameters µ0

and C = 2 set to obtain the best description of the data. The values of these parameters

are given in Table 1. We use (2.12) as the initial condition at Y0 = ln 1/x0, x0 = 10−2

and evolve the amplitude with the BK equation to obtain the solution at lower values of

x < x0. We also note that the initial condition (2.12) depends only on the absolute values

of the dipole size and impact parameter. A nontrivial dependence on the angle between

vectors r and b is not present in the initial condition, instead being dynamically generated

when the initial condition is evolved with the BK equation.

The BK equation was solved numerically by discretizing the scattering amplitude in

terms of variables (log10 r, log10 b, cos θ), where θ is the angle between the impact parameter
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Evolved solution for the dipole amplitude

Profile in b: Solid line KMW, dashed lines BK with running coupling and cuts
Small x evolution leads to the broader distribution in impact parameter

Change of shape with decreasing x

12

10-1 100 1010.0

0.1

0.2

0.3

0.4

0.5
Dipole Size: 1.00 (GeV-1) | cos(phi): 0.0 | Delta Y: 4.0 | max Y: 8.0

Impact Parameter (GeV-1)

N
(y

)

(a) Dipole size r = 1.0 GeV−1. Logarithmic horizontal axis.
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(b) Dipole size r = 1.0 GeV−1. Linear horizontal axis.

FIG. 7: Dipole scattering amplitude as a function of the impact parameter for fixed dipole size and dipole orientation θ = π/2.
The solid lines represent the model (8) used in [45]. The dashed lines correspond to the solution of the BK equation with the
kernel (15), m = 0.35 GeV. The dashed - dotted line represents the initial conditions at Y = 0 (x0 = 0.01) also taken from
model in [45].
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FIG. 8: The value of the average squared width ⟨b2⟩, defined in Eq. (17), as a function of rapidity for fixed value of the dipole
size r. The solid line is the model (8) with parameters taken from [45] and the dashed line is obtained from solution to the BK
equation with the kernel (15).

defined as

⟨b2⟩ =

∫

d2b b2 N(r,b; Y )
∫

d2bN(r,b; Y )
, (17)

as a function of rapidity for fixed value of the dipole size r. We compared the value of ⟨b2⟩ extracted from the solution
to the BK equation with the value obtained from model (8). The model (8) gives almost constant width, independent
of rapidity, which is to be expected. On the contrary, in the case of the BK equation the width clearly increases with
rapidity. For the rapidities considered here, we observe that it is almost a linear growth, with slightly faster increase
at the highest values of rapidity ∼ 6 − 8 along with mild dependence of the slope on the value of the dipole size.
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Exclusive process: photo(production) and DIS
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Figure 8: W dependence of the vector meson cross section for elastic production of J/Ψ. The
experimental data are from [2, 5].
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Figure 9: The ratio of R = σL

σT
cross section for longitudinally to transverly polarized vector

mesons. The plots are for ρ (top left W = 75 GeV and right W = 90 GeV), φ (bottom left
W = 90 GeV), and J/Ψ (bottom right W = 75 GeV).

key in unraveling the impact parameter profile of the target at small-x. The t-dependence

can be related to the impact parameter dependence via two-dimensional Fourier transform

of the amplitude as indicated in Eqs. (2.6),(2.8). The differential cross section is usually

parameterized as dσ
dt ∝ e−BD |t| in bins of Q2 and W . The dimensionful slope parameter BD

thus contains the information on the spatial distribution of the interaction region in the
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Figure 6: W dependence of the vector meson cross section for elastic production of ρ. The
experimental data are from [1, 3, 6, 7].
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Figure 7: W dependence of the vector meson cross section for elastic production of φ. The
experimental data are from [3, 6].

calculations based on the dipole model.

3.2 Differential cross section and t-distribution in vector meson production

The t-distribution of the differential cross section for elastic vector meson production is
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Exclusive diffraction
Integrated cross section
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Figure 6: W dependence of the vector meson cross section for elastic production of ρ. The
experimental data are from [1, 3, 6, 7].
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Figure 7: W dependence of the vector meson cross section for elastic production of φ. The
experimental data are from [3, 6].

calculations based on the dipole model.

3.2 Differential cross section and t-distribution in vector meson production

The t-distribution of the differential cross section for elastic vector meson production is
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calculations based on the dipole model.

3.2 Differential cross section and t-distribution in vector meson production

The t-distribution of the differential cross section for elastic vector meson production is
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Correction from skewedness
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Figure 4: Dipole scattering cross section (obtained by integrating the dipole scattering amplitude
over the impact parameter) as a function of the dipole size (in units of GeV−1) for two values
of rapidity Y = 2.4 (left plots) and Y = 4.6 (right plot). Dashed lines correspond to the b-Sat
model from [10] whereas solid lines correspond to the BK solution used in this paper. The dipole
scattering cross section is shown only until the cutoff value 1/m.
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Figure 5: Cross section σ(Q2, W 2) for the vector meson production plotted as a function of
(Q2 + M2

V
) for ρ elastic production. The experimental data are from [1, 3, 7].

3.1 Cross sections for exclusive vector meson production integrated over t

Let us first show the comparison between the calculation based on the dipole model with

BK equation and the experimental data on the cross section for the process of exclusive

diffractive electroproduction of vector mesons, where the cross section has been integrated

over the momentum transfer t. The experimental data from H1 and ZEUS for ρ [1, 3, 7],

φ [3, 6] and J/Ψ [2, 5] were used.

Figures 5 and 6 shows the cross section for production of ρ, φ and J/Ψ vector mesons as

a function of variable (Q2+M2
V ), where M2

V is the mass squared of the corresponding vector

meson. This variable is commonly used instead of Q2 itself as it provides the scale for the

vector meson. One cannot, however, expect that cross sections for different vector mesons
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Figure 7: Illustration of the effect of various corrections on the integrated cross section for the
vector meson production. Left: the solid line represents the calculation without skewedness and the
real part of the scattering amplitude, while the dashed line represents calculation which includes
skewedness and a correction to account for the real part of the scattering amplitude in the initial
condition. No correction to the photon wave function was made on either of these curves. Right:
both curves have the initial condition corrected for the real part of the scattering amplitude and
include a skewed gluon distribution correction. The solid line represents the inclusion of the photon
wave function correction and the dashed line is the calculation without the photon wave function
correction term.

the other hand in the approach [10] such cutoff is absent and the cross section gets sizeable

contributions from very large dipole sizes. We note that such additional non-perturbative

correction in the approach using BK evolution with confinement was needed to obtain good

description of the F2 data at low values of Q2, see [31].

The W energy dependence of the cross sections is shown in Figs. 8,9,10 for ρ,φ, J/Ψ

respectively. The different curves are plotted in different bins of Q2. Overall trend in both

cases, i.e. for Q2 and W dependence, is such that the calculations describe the dependence

in Q2 and W dependence very well for the case of φ and J/Ψ. The data for ρ production

are not well described, in particular the normalization in this case is systematically little

bit low, especially for lowest values of Q2. This region is however the one which is not

under perturbative control and some unknown non-perturbative corrections, related for

example to the exact form of the wave function, may play an important role in this region.

The ratio of the longitudinal to the transverse part of the cross section R = σL
σT

was

analyzed as well. This ratio has a significant sensitivity to the exact form of the wave

functions used. In Fig. 11 the calculation is compared with the experimental data as a

function of Q2. The data sets shown in figures are for very wide bins on W , and therefore

we have shown the curves which correspond to the middle value of the bins.

By inspecting the formulae for the transverse and longitudinal cross sections one would

think that the ratio should be approximately independent of the energy W . This is not

entirely true as the longitudinal and transverse components of the cross sections are sen-

sitive to somewhat different distributions of the dipole size configurations in the photon
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T

Figure 1: Schematic picture of high energy exclusive J/ production, �⇤p ! J/ p. The

factorised form follows since, in the proton rest frame, the formation time ⌧f ' 2E�/(Q2+M

2
J/ )

is much greater than the cc̄-proton interaction time ⌧int. In the case of the simple two-gluon

exchange shown here, ⌧int ' Rp, where Rp is the radius of the proton.

where ↵0 = 0.06 and W0 = 90 GeV. This slope grows more slowly with W than the formula

used by H1 [7], but is compatible with the HERA data and with the slope and ↵

0 of model

4 of [8] used below in Section 3 to calculate the gap survival probability S

2 in the case of

pp ! p+ J/ + p process measured by LHCb.

Thus it becomes possible, in principle, to extract the gluon density xg(x, Q̄2) directly from

the measured di↵ractive J/ cross section. However, first, let us list the corrections to the

leading order expression. Expression (1) is a simple first approximation, justified in the leading

order (LO) collinear approximation using the non-relativistic J/ wave function. It was shown

by Hoodbhoy [9] that the relativistic corrections to (1), written in terms of the experimentally

measured �ee, are small, ⇠ O(4%), and we neglect them.

We also need to account for the fact that the two exchanged gluons carry di↵erent fractions

x, x

0 of the light-cone proton momentum, see Fig. 1. That is, we have to use the generalised

(skewed) gluon distribution. In our case x

0 ⌧ x ⌧ 1, and the skewing e↵ect can be well

estimated from [2] – the amplitude should be multiplied by

Rg =
22�+3

p
⇡

�(�+ 5
2)

�(�+ 4)
, (4)

where �(Q2) = @ [ln(xg)] /@ ln(1/x) (for a more detailed discussion see [10]). In other words,

in the small x region of interest, we take the gluon to have the form xg ⇠ x

��, where � may

be scale dependent.

3

Effect of correction from skewed 
gluon distribution non-negligible
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Differential cross section
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Figure 12: The differential cross section of J/Ψ production as a function of W for fixed Q2 in bins
of momentum transfer t, data from H1 [2].
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Figure 13: Differential cross section of J/Ψ production for a fixed W in bins of Q2 as a function
of momentum transfer |t|. Calculations were done with W = 100GeV and W = 90GeV. The
experimental data are from H1 experiment [2].
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Diffractive slope
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Figure 10: Dependence of the slope parameter BD on combined variable Q2 + M2

V
for ρ, φ, J/Ψ

scattering process. Three plots in Figure 10 show the dependence of the slope parameter

on the variable Q2 + M2
V for ρ,φ, and J/Ψ. The theoretical curves follow the trend of

the experimental data. We observe that for the ρ production the dependence of BD on

Q2 is well described but the normalization is underestimated, which is most probably

related to the lower normalization for the resulting integrated cross section. The decrease

of the slope for low values of Q2 + M2
V is related to the initial dependence on the size

of the vector meson. For larger values of Q2 the dependence flattens to a common value

of BD ∼ 4 GeV−2 for each of the vector meson species. This flattening and universality

at large values of Q2 indicates that in this regime the BD indeed characterizes the size

of the proton through the interaction with the small probe which is high Q2 dipole. This

characteristic size of the gluon density inside the proton
√

⟨r2⟩ ∼ 0.6 fm is markedly smaller

than the electromagnetic radius which is of the order ∼ 0.8 fm. This indicates that the

gluon distribution differs from the spatial extension of the quarks in the proton.

In Fig. 11 we show the same quantity BD but as a function of W for two different

values of Q2 for both J/Ψ and ρ. While the error bars on the experimental data for BD

are relatively large, we see that the theoretical curves describe very well the increasing

trend of the data, which is especially visible in the bin for lower value of Q2 (in fact the

bin with higher Q2 is consistent with the flat dependence as well). In the calculation

– 16 –

d�

dt
⇠ e�BD|t|

• The value of BD is closely related to the  
transverse size of the interaction 
region which is a combination of the 
size of the VM and the  size of the 
gluon hot-spot in the proton. 

• In the case of the lighter mesons it is 
the first one which prevails. 

• For heavier mesons, it is the larger size 
of the gluon distribution in the proton. 
Thus it does not depend on Q2 that 
much.
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Slope vs energy
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Figure 11: Dependence of the slope parameter BD versus W for J/ψ and ρ production. Data are
from H1 experiment [2] and [7].

section with respect to t as well as its variation with the energy. The presented cal-

culation shows very good agreement with the experimental data on BD, including its

W dependence in the case of J/Ψ. The slope of BD is reproduced for ρ but the nor-

malization remains low. The W dependence is generated dynamically in the dipole

evolution. The speed of this increase is controlled by the parameter rmax = 1
m which

is not calculable from perturbation theory and needs to be adjusted.

4. The calculation presented includes the running coupling in the evolution, but misses

other important NLL effects which are known to be non-negligible. These should

help to bring the calculation to a better agreement with the data, especially as far

as the W dependence is concerned. The analysis which includes these effects is thus

left for further investigation.
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Intercept controlled by the initial 
profile in b, slope controlled by the 
mass regulator in the kernel.

Trend of the data nicely 
reproduced.

⇢ on the lower side : more non-
perturbative corrections

d�

dt
⇠ e�BD|t|
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Original b-Sat 
model has flat 
dependence
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Slope vs energy
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• Reasonable description of the diffractive slope from dynamical prediction based 
on BK evolution with cutoff

• By making mass regulator smaller, the slope can be increased
• Functional dependence on energy could help determine type of cutoff: sharp or 

exponential

ALICE
BD(W = 29.8 GeV) = 4 GeV�2

BD(W = 706 GeV) = 6.7 GeV�2
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Summary and outlook

• Exclusive diffractive VM production using solution to the impact parameter 
dependent BK equation

• Coupling no longer regularized by saturation only. Need cuts on large 
dipoles. Large sensitivity to this regularization.

• Extra corrections: skewed gluon distribution, non-perturbative modification 
to the photon wave function.

• Exclusive diffraction of vector mesons, good description of data, in bins of 
t,W,Q, especially for heavier vector mesons. Lighter VM overall shape is 
reproduced, normalization is not well reproduced.

• Energy dependence of the diffractive slope generated by the model, depends 
on the phenomenological parameters, mainly set by the cutoff on the large 
dipoles.

• Looking forward to the more measurements of the energy dependence of t-
distribution for J/ψ from LHC.
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