Storage in CMS DAQ

Openlab Technical Workshop, 1 Mar 2017, CERN Prepared by Frans Meijers – CERN PH-CMD CMS DAQ team

Outline:

- Introduction
- Storage in current DAQ and baseline for HL-LHC
- Alternative approaches for DAQ at HL-LHC

CMS Online/Offline computing model

Timeline and CMS DAQ parameters

5 year replacement cycle DAQ equipment

Table 7.1: DAQ/HLT system parameters.

	LHC	LHC	HL-LHC	
	Run-I	Phase-I upgr.	Phase-II upgr.	
Energy	7-8 TeV	13 TeV	13 TeV	
Peak Pile Up (Av./crossing)	35	50	140	200
Level-1 accept rate (maximum)	100 kHz	100 kHz	500 kHz	750 kHz
Event size (design value)	1 MB	1.5 MB	4.5 MB	5.0 MB
HLT accept rate	1 kHz	1 kHz	5 kHz	7.5 kHz
HLT computing power	0.21 MHS06	0.42 MHS06	5.0 MHS06	11 MHS06
Storage throughput (design value)	2 GB/s	3 GB/s	27 GB/s	42 GB/s

DAQ for run-2

Storage for IT infrastructure

- Online cluster:
 - Usage: repositories, user home directories, VM images, ...
 - Current size: ~ 250 TB
 - Requirements:
 - HA
 - "turn key solution", minimal operation needs
 - Current
 - NetApp NAS filer
- Evolution:
 - Requirements met with standard commercial solution

Event Data Storage for DAQ in DAQ2 (step-1)

- The output of the EVB = input for High Level Trigger uses temporary storage on file system
 - allows the DAQ and HLT systems to be independent and to use the HLT software in the same way as for the offline processing.
 - 100 kHz, 1.5 MB evt size, yields 150 GB/s aggregate with ~75 servers

Per server

- Requirements (2 GB/s W+R, few minutes buffer) met with RAM disk technology
- SSD technology is improving both in terms of I/O throughput, as well as endurance.

Event Data Storage for DAQ in DAQ2 (step-2)

- The output of the EVB = input for High Level Trigger uses temporary storage on file system
- Output of HLT stored in (~20) "streams" per "Lumi-section"
 - Function: Merging, storage, monitoring and transfer to EOS
 - Storage system with Global File System
 - HA
 - Current implementation
 - Storage system and Lustre FS, interconnected via IB (and Ethernet)
 - ~100 clients, 360 disks over 3x2 MDS
 - Application level throughput ~6 GB/s, sequential write ~16 GB/s
 - Real GFS; Exploit multiple writers to same file
 - Reduces BW requirements by factor 2

E5560/DE6600 Lustre

Lustre File System

8M 27-02-2017 DAQ weekly

CMS L1 / DAQ / HLT

- Same two-level architecture as current system
 - L1 hardware trigger: 40 MHz clock driven, custom electronics
 - High Level Trigger (HLT): event driven, COTS computing nodes

Table 7.1: DAQ/HLT system parameters.

	LHC	LHC	HL-LHC	
	Run-I	Phase-I upgr.	Phase-II upgr.	
Energy	7-8 TeV	13 TeV	13 TeV	
Peak Pile Up (Av./crossing)	35	50	140	200
Level-1 accept rate (maximum)	100 kHz	100 kHz	500 kHz	750 kHz
Event size (design value)	1 MB	1.5 MB	4.5 MB	5.0 MB
HLT accept rate	1 kHz	1 kHz	5 kHz	7.5 kHz
HLT computing power	0.21 MHS06	0.42 MHS06	5.0 MHS06	11 MHS06
Storage throughput (design value)	2 GB/s	3 GB/s	27 GB/s	42 GB/s

L1 / DAQ / HLT: Baseline

Baseline: Challenges

- Baseline CMS DAQ architecture for Run4 feasible with readily available technology
- Main Challenge: Limited Budget
- Directions:
 - Data to Surface: efficient concentration and transition to asynchronous/ reliable protocol
 - Event Builder: Reduce size and complexity
 - I/O processors
 - Choice of Network
 - Size/cost of HLT farm
 - Understand actual evolution of hardware
 - Use of heterogeneous architectures
 - Evolution of reconstruction software

Cursory conclusion

- Reduction of complexity and cost may result from tracking and late adoption of maturing technologies
 - Multi 100 Gb links, on chip fabric
 - High bandwidth and large NV memory I/O servers
- Design options and exploratory work
 - Event Network: Non-building
 - HLT: programming styles more suitable for truly distributed systems with large NV memory
 - HLT: coprocessors and offload engines

I/O, Buffer and Process (extrapolation)

HLT: harness efficient CPU power

- Coprocessors and offload farms
 - CUDA, OpenCL...
 - Preemptive local reconstruction with ad-hoc software/hardware
- Truly distributed local processing (exploiting high-performance fabric)
- FPGA-assisted regional reconstruction
- Early classification real-time indices
- Container / query programming style leveraging large NV memory

• 5000 GB/s

Hardware key-value (object) datastore

- Use of up-and-coming object datastore "standards" in DAQ
 - in a first phase, implementation of parts of the existing CMS DAQ architecture using the open storage API (but not necessarily the hardware).
 - For example, replace parts of the current EVB protocol, by implementing a "readout unit" using a logical open storage device and complete event building as a lookup/ read from a "cluster" of RU devices. This paves the way to selective build directly from the HLT application
 - if high-throughput devices become available, it is imaginable to implement the protocol at the level of the common detector interface ("FED"). This could allow building a "virtual" pipeline at the output of the L1 trigger, thus potentially enabling differed and selective processing of L1-accepted events.

EXTRA MATERIAL