

# Teilchendelektoren

🕴 and the set when the set of th

European Organisation for Nuclear Research NTW summer school, August 2017

"Magic is not happening at CERN, magic is explained at CERN" - Tom Hanks



Kristof Schmieden EP Department kristof.schmieden@cern.ch



SCHELDE

0

# Impressionen von großen Geräten





# Impressionen von großen Geräten





Kristof Schmieden



# Was wollen wir über die Teilchen wissen?



### • Impuls p:

- Krümmungsradius im Magnetfeld
- Geschwindigkeit v:
  - Flugzeitmessung, RICH, ...

### • Energie E:

Vollständige Absorption -> Kalorimeter

### • Lebensdauer t:

Messung der Zerfallsstrecke

### • Teilchenmasse:

Indirekte Bestimmung aus Impuls und Energie







- Stabil Lebensdauer > Flugzeit durch Detektor (cm m)
  - Photonen
  - Elektron / Muon
  - Proton / Neutron / Hadronen (Pion / Kaon)
  - Neutrinos
- "Langlebig" > Zerfallsvertex messbar (µm mm)
  - Tauon
  - B-Hadronen



# Der Universelle Teilchendetektor der Hochenergiephysik



• Ziel: Messung von Energie und Impuls aller Teilchen



"Fixed-Targed" Experimente (COMPASS)

### Universeller Teilchendetektor - ATLAS / CMS





# Universeller Teilchendetektor - ATLAS





### Universeller Teilchendetektor - ATLAS



 $Z \rightarrow \mu^+ \mu^-$ 





# Spurdetektionssysteme Impulsmessung

Kristof Schmieden

13



#### • Impuls $\mathbf{p} = \mathbf{m} \mathbf{v} = \gamma \mathbf{m}_0 \mathbf{v}$



Lorentzkraft: $F_L = Q \cdot [v \times B]$ Zentripedalkraft: $F_Z = m \cdot v^2 / r$  $F_L = F_Z$  $= p/r = Q \cdot B = p = Q \cdot B \cdot r$ 



#### • Impuls $\mathbf{p} = \mathbf{m} \mathbf{v} = \gamma \mathbf{m}_0 \mathbf{v}$



Lorentzkraft:  $F_L = Q \cdot [v \times B]$ Zentripedalkraft:  $F_Z = m \cdot v^2 / r$  $F_L = F_Z \implies p/r = Q \cdot B \implies p = Q \cdot B \cdot r$ B = 2T







#### Komplikationen:

- Inhomogenes Magnetfeld
- Energieverlust der Teilchen im Detektormaterial
  - Numerischer Fit der Teilchenspur durch Detektor













Kristof Schmieden

- Beispiel: ATLAS Pixeldetektor
  - 80M Pixel = 80M Auslesekanäle
    - 160M einstellbare Parameter
    - Triggerrate: 100kHz
  - 2 phasen Kühlsystem (CF<sub>6</sub>) bei -10C
  - Services: LV, HV, Daten für 1700 Module



CERN

- Diode in Sperrichtung
- Ladungserzeugung & Drift
   Analog zu Gas-Ionisationskammern
- Festkörper → hohe Dichte
  - Hoher Energieverlust auf kurzer Strecke





- Anordnung in Streifen:
  - Länge ~cm
  - Abstand ~20µm

Anordnung in Pixel:
In Atlas: 50µm x 500µm

# Halbleiter Detektoren - Entwicklung





#### • Sehr aktives Forschungsgebiet!

- Verschiedene Konzepte
- Neue Materialien

# Halbleiter Detektoren, quo vadis?



- Monolithisch:
  - Interne Verstärkung:
    - Kleineres Rauschen





# Halbleiter Detektoren, quo vadis?



- Monolithisch:
  - Interne Verstärkung:
    - Kleineres Rauschen







- Diamant (Isolator) als aktives Medium (Ionisationskammer)
  - extrem Strahlenhart
  - praktisch keine freien Ladungsträger
    - kein Leckstrom
  - gute Ladungssammlungseigenschaften

### Halbleiterdetektoren - Damals & Heute



CMS



Kristof Schmieden

Kalorimeter - Energiemessung

ERN



- Energiemessung der Teilchen
- Vollständige absorption:
  Hohe Dichte
- Energie deponiert in Form von
  - Wärme
  - Ionisation
  - Licht
    - Anregung
    - Szintillation

#### Homogenes Kalorimeter





Leptonen: EM, schwache Wechselwirkung Hadronen: EM, schwache, starke Wechselwirkung





Leptonen: EM, schwache Wechselwirkung Hadronen: EM, schwache, starke Wechselwirkung

Ionisation

Elastische Streuung Rückstoß am Atom / Kristallgitter → Phonen

Inelastische Streuung





Leptonen: EM, schwache Wechselwirkung Hadronen: EM, schwache, starke Wechselwirkung

Ionisation

Elastische Streuung Rückstoß am Atom / Kristallgitter → Phonen

Inelastische Streuung





Leptonen: EM, schwache Wechselwirkung Hadronen: EM, schwache, starke Wechselwirkung

Ionisation

Elastische Streuung Rückstoß am Atom / Kristallgitter → Phonen

Inelastische Streuung



### Interaktion von Photonen mit Materie



Leptonen: EM, schwache Wechselwirkung Hadronen: EM, schwache, starke Wechselwirkung



### Interaktion von Photonen mit Materie



Leptonen: EM, schwache Wechselwirkung Hadronen: EM, schwache, starke Wechselwirkung



Elektromagnetische Wechselwirkung



Leptonen: EM, schwache Wechselwirkung Hadronen: EM, schwache, starke Wechselwirkung



Elektromagnetische Wechselwirkung

# Messgrößen von Interesse - Energie

- Stoppen der Teilchen im Kalorimeter
  - Licht oder Ladungssignal proportional zur Energie E
- Elektromagnetisches Kalorimeter: e/γ
- Oberhalb E<sub>k</sub>: Energieverlust durch Paarbildung und Bremsstrahlung



Anzahl der Teilchen nach t Strahlungslängen:  $N(t) = 2^{t}$ 

Mittlere Energie der Teilchen:  $E(t) = E_0/2^t$ 

Schauermaximum bei  $E(t) = E_k$ :  $t_{max} = In(E_0) * In(2) / In (E_k)$ 

=> Kalorimeterlänge wächs mit In(E<sub>0</sub>)




- Stoppen der Teilchen im Kalorimeter
  - Licht oder Ladungssignal proportional zur Energie E
- Elektromagnetisches Kalorimeter: e/γ
- Typische Materialien:
  - Nal  $(X_0 = 2,6cm \rightarrow 57cm @ 22 X_0)$ 
    - Relativ langsam 230ns / 150ms (!!)
  - PbWO<sub>4</sub> (X<sub>0</sub> = 0,9cm  $\rightarrow$  20cm @ 22 X<sub>0</sub>)
    - Schnell: 2-20ns



- Stoppen der Teilchen im Kalorimeter
  - Licht oder Ladungssignal proportional zur Energie E
- Elektromagnetisches Kalorimeter: e/γ
- Typische Materialien:
  - Nal  $(X_0 = 2,6cm \rightarrow 57cm @ 22 X_0)$ 
    - Relativ langsam 230ns / 150ms (!!)
  - PbWO<sub>4</sub> (X<sub>0</sub> = 0,9cm → 20cm @ 22 X<sub>0</sub>)
     Schnell: 2-20ns



### Homogenes Kalorimeter:

- Beste Energieauflösung
- Teuer
- PMT auslese
- problematisch im B Feld
- keine longitudinale Segmentierung!









CERN

- Stoppen der Teilchen im Kalorimeter
  - Licht oder Ladungssignal proportional zur Energie E
- Elektromagnetisches Kalorimeter: e/γ
- Alternativ:
  - Absorber & Aktives Medium abwechseln
    - Absorber Stahl / Blei / Wolfram / Uran (großes Z)
    - Aktives Material: Szintillator: Organisch Ionisation: Flüssiges Argon

CERN

- Stoppen der Teilchen im Kalorimeter
  - Licht oder Ladungssignal proportional zur Energie E
- Elektromagnetisches Kalorimeter: e/γ
- Alternativ:
  - Absorber & Aktives Medium abwechseln
    - Absorber

Stahl / Blei / Wolfram / Uran (großes Z)

 Aktives Material: Szintillator: Organisch Ionisation: Flüssiges Argon



### Sampling Kalorimeter:

- Kompakt
- Hohe 2D Segmentierung
- Günstiger
- Schlechtere Energieauflösung







### Messgrößen von Interesse - Energie



### • Auflösung = relativer Fehler auf Energiemessung:





### Nachweis von Neutrinos

### Neutrinos - Cherenkov-Licht in Wasser



Reaktion: Neutrino - Elektron Streuung

- Schnelles Elektron erzeugt Cherenkov-Licht
- Öffnugswinkel abhängig von Geschwindigkeit  $cos(\theta) = c/v$



### Neutrinos - Antares / km3Net



Neutrino Teleskop im Mittelmeer
3.4 km Tiefe

### km3Net (im Bau): 600 Strings (650m) mit je 18 Optischen Modulen



Antares (2008)

12 Strings (350m) mit je 75 Optischen Modulen



Francois Montane

### Insgesamt: 200k PMTs

## Neutrinos - Cherenkov-Licht in Wasser



### • Super-Kamiokande



### Neutrinos



- Cherenkov (Wasser)
- Chemische Veränderung

$$\nu_{\rm e} + {}^{37}{\rm Cl} \longrightarrow {}^{37}{\rm Ar} + {\rm e}^{-1}$$

- Homestake experiment: 615t Tetrachlorethylen: 0,5 Neutrinos pro Tag
- Ar aus Detektor Volumen extrahiert und "Atome gezählt"



### Gamma-Teleskope Kosmische Höhenstrahlung





















Kristof Schmieden









Kristof Schmieden

# Luftschauer - HESS / MAGIC



### Cherenkov Teleskope





### Luftschauer - HESS









# Luftschauer - Piere Auger



- 1650 Muon Detektoren Wasser Cherenkov
- 4 Cherenkov Teleskope
- > 3000 km<sup>2</sup> Abdeckung











# Detektoren für Dunkle Materie

# Detektoren für Dunkle Materie

- Interaktion ausschließlich per schwacher Wechselwirkung
  - Sehr seltene Ereignisse
    - Brauche sehr gute Abschirmung
- Sehr kleiner Impulsübertrag: ~10 keV
  - Stoß mit Kern:
    - Phononen (Giterschwingungen)
    - Anregung (Szintillation)
  - Stoß mit Elektron
    - Ionisation



# Detektoren für Dunkle Materie

- Interaktion ausschließlich per schwacher Wechselwich
  - Sehr seltene Ereignisse
    - Brauche sehr gute Abschirmung
- Sehr kleiner Impulsübertrag:
  - Stoß mit Kern:
    - Phononen
    - Anregung (Sz.
  - Stoß mit Elektron
    - Ionisation





- Übertragung der Energie auf Wolframfaden (1µm)
  - Erwärmung
  - große Widerstandsänderung



# Detektoren für Dur de Materie **ononen**

• CDMS: Messung d' l'emperaturerhöhung Phong au



• Temperaturstabilisierung durch elektro-thermische-



Selbststabilisierendes System!

Verlustleistung: P = U\*I = U<sup>2</sup>/R, U=konstant !
 T(Substrat) << T<sub>c</sub>

## Detektoren für Dunkle Materie - Szintillation



### • XENON: 2 Phasen system: Szintillation / Ionisation

**TPC!** 



## Detektoren für Dunkle Materie - Szintillation



### • XENON: 2 Phasen system: Szintillation / Ionisation

### Aufwändige Abschirmung





# Zusammenfassung

# Zusammenfassung

CERN

- Viele verschiedene Teilchendetektoren
- Oft mit vielen Technischen und Physikalischen Kniffen
  - Universal HEP Detektor
  - Neutrinos
  - Höchstenergetische Ereignisse in der Atmosphäre

### und es gibt noch viele mehr .....



# Triggersysteme

# Universal Detektor für HEP - Triggersystem



Problem: Datenmenge

- ~1,6 MB pro Ereignis
  - Kollisionen mit 40MHz => 64 TB/s
- Maximale Speicherrate: 1kHz => 1,6 GB/s

• Ausgeklügeltes Triggersystem:

- L1 FPGA basiert: 40MHz -> 100kHz (160 GB/s) Muon Info + Calo Info + Topo. Verknüpfung 512 ,Items'
- HLT: PC basier: 100kHz -> 1kHz Volle Information Event Rekonstruktion (fast) beliebige Algorithmen möglich

# Universal Detektor für HEP - Triggersystem



Problem: Datenmenge

- ~1,6 MB pro Ereignis
  - Kollisionen mit 40MHz => 64 TB/s
- Maximale Speicherrate: 1kHz => 1,6 GB/s





- more inputs: 512 trigger inputs
- more computing resources
- dedicated monitoring FPGA

additional monitoring counters
256 per bunch counters vs. 12!






# Energieverlust in Materie - geladene Teilchen

- Energieverlust abhängig von:
  - Teilchenart (m), Teilchenimpuls (p) & Absorbermaterial (Z)



# Energieverlust in Materie - geladene Teilchen



#### • Energieverlust in unterschiedlichen Materialien:



## Energieverlust in Materie - Photonen







# Apropos Ionisationskammer -Gasdetektoren

# Apropos Ionisationskammer - Gasdetektoren

- Ladungsseparation durch ionisation
  - Ladung drifted in angelegtem E Feld zu Elektroden
  - Verstärkung bei großem E-Feld durch Stoßionisation
    - Sekundärionisation
  - Elektronenlawine (Durchbruch)  $\rightarrow$  Entladung



# Gasdetektoren - MWPC

- Multiwire proportional chamber Drahtkammer
  - Anoden in Form von d
    ünnen Dr
    ähten
  - Viele Drähte im Abstand von ~mm
    - gute Ortsauflösung eines durchquerenden Teilchens
    - große Flächen



# Gasdetektoren - MWPC

- Multiwire proportional chamber Drahtkammer
  - Anoden in Form von d
    ünnen Dr
    ähten
  - Viele Drähte im Abstand von ~mm
    - gute Ortsauflösung eines durchquerenden Teilchens
    - große Flächen



# Gasdetektoren - MWPC

- Multiwire proportional chamber Drahtkammer
  - Anoden in Form von d
    ünnen Dr
    ähten
  - Viele Drähte im Abstand von ~mm
    - gute Ortsauflösung eines durchquerenden Teilchens
    - große Flächen



Weiterentwicklung:
Cathod strip chamber





# Gasdetektoren - Drift tubes

- Problem der MWPC: reisende Drähte (z.B. durch Funken)
  - Kammer evtl. unbenutzbar durch Kurzschluss!
- Lösung: Drift tubes
  - Jeder Draht umhüllt
  - Messe Driftzeit zur Verbesserung der Ortsauflößung







# Gasdetektoren - Micromegas

- Bessere Ortsauflösung & höhere Teilchenrate?
  - größere Granularität → kleineres Ladungssammlungsvolumen pro Kanal







# Gasdetektoren - GEM

• Bessere Ortsauflösung & höhere Teilchenrate?

größere Granularität → kleineres Ladungssammlungsvolumen pro Kanal





# Gasdetektoren - TPC

- Time projection chamber
  - 3D Ortsauflösung bei sehr geringem Detektor Material
  - sehr große Volumina möglich
  - 2D Projektion einer Teilchenspur; 3te Dimension aus Zeitinformation





# Szintillation

# Szintillation



Umwandlung von Anregungsenergie in Licht



- Im Detail sehr komplexer Vorgang
  - Viele Zwischenniveaus
  - Strahlende und nicht strahlende Übergänge
  - Anregung von anderen Elektronen durch emittiertes Photon
    - Geschickte Wahl der Zustände und möglichen Übergänge

•

- Materialien:
  - Anorganische Kristalle / Flüssigkeiten / Edelgase
  - Organische Kunststoffe / Flüssigkeiten

# Szintillation

- Umwandlung von Anregungsenergie in Licht
  - Nur Bruchteil umgewandelt!
  - Auslese typisch mit PMT

## • Anorganische Kristalle:

- Nal, PbWO<sub>4</sub>, BaF, ...
- Relativ langsam: 10-1000 ns Abklingzeit
- Hohe Dichte
- Wellenlänge: 300-500nm
- z.T. hygroskopisch





- ,Plastikszintillator' (organisch):
  - Reichhaltige Auswahl
  - Schnell: 1-10 ns Abklingzeit
  - Geringe Dichte
  - Wellenlänge: 300-400nm
  - Einfach zu bearbeiten, beliebige Formen

# LHCb

- Optimiert für spezielle Teilchen:
  - B-Mesonen
  - leichte Teilchen (5 GeV)
  - Zerfallsteilchen bewegen sich in Vorwärtsrichtung
  - ➡ Nur ein Spektrometerarm gebaut

## • Untersucht die Unterschiede zwischen Materie & Antimaterie

(CP - Verletzung)

Zerfallslänge von B - Mesonen
~ 0.5 mm

 Sehr gute Vertexauflösung erforderlich (10 µm)

• Si Streifendetektor, nur 7mm vom Strahl entfernt!





# LHCb









# Universeller Teilchendetektor



## • Ziel: Messung von Energie und Impuls aller Teilchen



Zwei universelle Detektoren: Atlas & CMS größte Experimente am LHC



• Impuls  $p = m v = \gamma m_0 v$ 



Lorentzkraft: $F_{L} = Q \cdot [v \times B]$ Zentripedalkraft: $FZ = m \cdot v^{2} / r$ 

 $FL = FZ \implies p/r = Q \cdot B \implies p = Q \cdot B \cdot r$ 

### Impulsauflößung Innerdetektor: B = 2T

=> Limitiert durch  $\Delta B$ ,  $\Delta R$ 

dX: Messgenauigkeit der Position eines Hits PIX: 10µm; SCT: 17µm; TRT: ~0,1-1mm

> Δp<sub>T</sub> / p<sub>T</sub> = 1.5% @ 5 GeV
 > Δp<sub>T</sub> / p<sub>T</sub> = Δr / r
 rel. Fehler wächst linear mit Impuls!

=> bei niedrigem Impuls limitiert durch Mehrfachstreuung

Vertex Auflösung: besser als 30µm

## Messgrößen von Interesse - Impuls



#### • Beispiel: ATLAS Pixeldetektor



(a)

(b)

# Messgrößen von Interesse - Impuls



- ATLAS Muonspektrometer
- Einzelne Kammern: bis zu 5x7m<sup>2</sup>
- B = 0,5 1 T



# Messgrößen von Interesse - Impuls



#### Impulsauflößung Muonsystem: Alignment





# Neutrinos



- Cherenkov (Wasser)
- Chemische Veränderung
- Film

## **Opera Experiment:**



# Neutrinos



- Cherenkov (Wasser)
- Chemische Veränderung
- Film



## **Opera Experiment:**