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Contents of the hands-on lesson

1. Probabilities of Poisson-distributed data
– with and without nuisances

2. Modeling distributions: the F-test
3. Understanding confidence intervals

– bounded parameter, Gaussian measurement
– (flip-flopping and undercoverage)

4.      Hypothesis testing and goodness of fit
5.      Stuff I won't discuss, but you still find in this file for reference

Code for exercises in: 
http://www.pd.infn.it/%7Edorigo/Poisson_prob_fix.C
http://www.pd.infn.it/%7Edorigo/Poisson_prob_fluct.C
http://www.pd.infn.it/%7Edorigo/F_test_commented_exercise.C
http://www.pd.infn.it/%7Edorigo/F_test_commented.C
http://www.pd.infn.it/%7Edorigo/FlipFlop_exercise.C
http://www.pd.infn.it/%7Edorigo/FlipFlop.C
http://www.pd.infn.it/%7Edorigo/Coverage.C
http://www.pd.infn.ig/%7Edorigo/Die3a.C (and Die.C and Die2.C)

Mind the underscores
they are where you
see a space in the name

http://www.pd.infn.it/~dorigo/Poisson_prob_fix.C
http://www.pd.infn.it/~dorigo/Poisson_prob_fluct.C
http://www.pd.infn.it/~dorigo/F_test_commented_exercise.C
http://www.pd.infn.it/~dorigo/F_test_commented.C
http://www.pd.infn.it/~dorigo/FlipFlop_exercise.C
http://www.pd.infn.it/~dorigo/FlipFlop.C
http://www.pd.infn.it/~dorigo/Coverage.C
http://www.pd.infn.ig/~dorigo/Die3.C


1 – Probabilities of Poisson data



Exercise 1 – Poisson probabilities
We want to write a root macro that inputs expected background 
counts B (with no error) and observed events N, and computes the 
probability of observing at least N, and the corresponding number 
of sigma Z for a Gaussian one-tailed test.

The p-value calculation should be straightforward: just 
sum from 0 to N-1 the values of the Poisson 
(computing the factorial as you go along in the cycle), 
and derive p as 1-sum.

Deriving the number of sigmas that p corresponds to 
requires the inverse 
error function ErfInverse(x) as 
Z = sqrt(2) * ErfInverse(1-2p)
(it should be available as TMath::ErfInverse(double) )

You can also fill two distributions, one with the 
Poisson(B), the other with only the bins >=N filled (and 
with SetFillColor(kBlue) or something) and plot
them overimposed, to get something like the graph on 
the right (top: linear y scale; bottom: log y scale)
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Parenthesis – Erf and ErfInverse

• The error function and its inverse are useful 
tools in statistical calculations – you will 
encounter them frequently.

• The Erf can be used to obtain the integral of a 
Gaussian as 

The erfinverse function is used to convert alpha
values into number of sigmas. We will see examples
of that later on.



One possible implementation

• // Macro that computes p-value and Z-value 
• // of N observed vs B predicted Poisson counts
• // --------------------------------------------------------------------
• void Poisson_prob_fix (double B, double N) {

• int maxN = N*3/2; // extension of x axis
• if (N<20) maxN=2*N;
• TH1D * Pois = new TH1D ("Pois", "", maxN, -0.5, 

maxN-0.5);
• TH1D * PoisGt = new TH1D ("PoisGt", "", maxN, -0.5, 

maxN-0.5); // we also fill a “highlighted” portion

• double sum=0.;
• double fact=1.;
• for (int i=0; i<maxN; i++) {
• if (i>1) fact*=i;  // calculate factorial
• poisson = exp(-B)*pow(B,i)/fact;
• if (i<N) sum+= poisson; // calculate 1-tail integral
• Pois->SetBinContent(i+1,poisson);
• if (i>=N) PoisGt->SetBinContent(i+1,poisson);
• }
• double P=1-sum;  // get probability of >=N counts
• double Z = sqrt(2) * TMath::ErfInverse(1-2*P);

• cout << "P of observing N=" << N << " or more 
events if B="  << B << " : P= " << 1-sum << endl;

• cout << "This corresponds to " << Z << " sigma 
for a Gaussian one-tailed test." << endl;

• Pois->SetLineWidth(3);

• PoisGt->SetFillColor(kBlue);

• TCanvas* T = new TCanvas ("T","Poisson 
distribution", 500, 500);

• // Plot the stuff

• T->Divide(1,2);

• T->cd(1);

• Pois->Draw();

• PoisGt->Draw("SAME");

• T->cd(2);

• T->GetPad(2)->SetLogy();

• Pois->Draw();

• PoisGt->Draw("SAME");

• }



Adding a nuisance
• Let us assume now that B’ is not fixed, but known to 

some accuracy σB. We want to add that functionality to 
our macro. We can start with a Gaussian uncertainty.

You just have to throw a random number 
B=G(B’,σB) to set B, and collect a large 
number (say 10k) of p-values as before, 
then take the average of them.
(why the average ? Would the median be 
better ?)

Upon testing it, you will discover that you 
need to enforce that B be non-negative. 
What we do with the negative B 
determines the result we get, so we have 
to be careful, and ask ourselves what 
exactly do we mean when we say, e.g., 
“B=2.0+-1.0”

Example below: B=5+-4, N=12



Possible implementation
void Poisson_prob_fluct (double B, double SB, double N) {

double Niter=10000;

int maxN = N*3/2;

if (N<20) maxN=2*N;

TH1D * Pois = new TH1D ("Pois", "", maxN, -0.5, maxN-0.5);

TH1D * PoisGt = new TH1D ("PoisGt", "", maxN, -0.5, maxN-0.5);

// We throw a random Gaussian smearing SB to B, compute P,

// and iterate Niter times; we then study the distribution

// of p-values, extracting the average 

double Psum=0;

TH1D * Pdistr = new TH1D ("Pdistr", "", 100, -10., 0.);

TH1D * TB = new TH1D ("TB", "",100, B-5*SB,B+5*SB);

cout << "Start of cycle" << endl;

for (int iter=0; iter<Niter; iter++) {

// Extract B from G(B,SB)

double thisB = gRandom->Gaus(B,SB);

TB->Fill(thisB);  // We keep track of the pdf of the background

if (thisB<=0) thisB=0.; // Note this – what if we had rethrown it ?

double sum=0.;

double fact=1.;

for (int i=0; i<maxN; i++) {

if (i>1) fact*=i;

double poisson = exp(-thisB)*pow(thisB,i)/fact;

if (i<N) sum+= poisson;

Pois->Fill((double)i,poisson);

if (i>=N) PoisGt->Fill((double)i,poisson);

}

double thisP=1-sum;
if (thisP>0) Pdistr->Fill(log(thisP));
Psum+=thisP;

}
double P = Psum/Niter; // we use the average for our inference here
double Z = sqrt(2) * ErfInverse(1-2*P);
cout << "Expected P of observing N=" << N << " or more events if 

B=" 
<< B << "+-" << SB << " : P= " << P << endl;

cout << "This corresponds to " << Z << " sigma for a Gaussian one-
tailed test." << endl;

// Plot the stuff
Pois->SetLineWidth(3);
PoisGt->SetFillColor(kBlue);
TCanvas* T = new TCanvas ("T","Poisson distribution", 500, 500);
T->Divide(2,2);
T->cd(1);
Pois->DrawClone();
PoisGt->DrawClone("SAME");
T->cd(2);
T->GetPad(2)->SetLogy();
Pois->DrawClone();
PoisGt->DrawClone("SAME");
T->cd(3);
Pdistr->DrawClone();
T->cd(4);
TB->Draw();

}



2 – Finding the right model



Finding the right model

• Often in HEP, astro-hep etc. we do not know what is the true functional 
form the data are drawn from
– Can in specific cases use MC simulations; not always

• Extracting inference from a spectrum is thus limited: 
– “I see a deformation in the spectrum” 
– “A deformation from what ?”

Nonetheless, we routinely use e.g. mass spectra to 
search for new particles and we “guess” the data 
shape

EG: Higgs Hγγ searches in ATLAS and CMS !

These searches have trouble simulating the 
reconstructed mass spectrum so families of 
possible “background shapes” are used 

The modeling of the background shape is thus a 
difficult problem



Fisher’s F-test
• Suppose you have no clue of the real functional form followed by your data (n points)

– or even suppose you know only its general form (e.g. polynomial, but do not know the degree)

• You may try a function f1(x;{p1}) and find it produces a good fit; however, you are 
unsatisfied about some additional feature of the data that appear to be systematically 
missed by the model

• You may be tempted to try a more complex function –usually by adding one or more 
parameters to f1
– this ALWAYS improves the absolute c2, as long as the new model “embeds” the old one (the latter 

means that given any choice of {p1}, there exists a set {p2} such that f1(x;{p1})==f2(x;{p2})

How to decide whether f2 is more motivated than f1 , or rather, that the added parameters are 
doing something of value to your model ?

Don’t use your eye! Doing so may result in choosing more complicated functions than 
necessary to model your data, with the result that your statistical uncertainty (e.g. on an 
extrapolation or interpolation of the function) may abnormally shrink, at the expense of a 
modeling systematics which you have little hope to estimate correctly.

 Use the F-test: the function F
has a Fisher distribution if the 
added parameter is not improving 
the model.
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Example of F-test
• Imagine you have the data shown on the right, and need 

to pick a functional form to model the underlying p.d.f.
• At first sight, any of the three choices shown produces a 

meaningful fit. P-values of the respective c2 are all 
reasonable (0.29, 0.84, 0.92)

• The F-test allows us to pick the right choice, by 
determining whether the additional parameter in going 
from a constant to a line, or from a line to a quadratic, is 
really needed.

• We need to pre-define a size α of our test: we will reject 
the “null hypothesis” that the additional parameter is 
useless if p<α. Let us pick α=0.05 (ARBITRARY CHOICE!).

• We define p as the probability that we observe a F value 
at least as extreme as the one in the data, if it is drawn 
from a Fisher distribution with the corresponding 
degrees of freedom.

• Note that we are implicitly also selecting a “region of 
interest” (large values of F)!

How many of you would pick the constant model ? 
The linear ? The quadratic ? 
Would your choice change if α=0.318 (1-sigma)?



The test between constant and line 
yields p=0.0146: there is evidence
(according to our choice of α) against the 
null hypothesis (that the additional 
parameter is useless), so we reject the 
constant pdf and take the linear fit

The test between linear and quadratic fit 
yields p=0.1020: there is no evidence 
against the null hypothesis (that the 
additional parameter is useless). We 
therefore keep the linear model.



Playing with the F test

• The provided code can be used to get familiar with the use of the F test.
• Simple exercise: add functionality to generate exponentially falling data; 

check when linear model breaks down, when quadratic model also breaks 
down, etcetera, as a function of
– number of events in histogram 
– number of bins in histogram
– size of the test

What you need:
1) understand what the code does
2) understand how to generate exponentially falling data
3) code it
4) choose suitable upper range of histogram

In particular, you need to use the integral function of the pdf (we assume gRandom
only provides uniformly-distributed random numbers!)



3 - Confidence intervals



The simplest confidence interval: 
+- 1 standard error

• The standard deviation is used in most simple applications as a measure 
of the uncertainty of a point estimate

• For example: N observations {xi} of random variable x with hypothesized 
pdf f(x;q), with q unknown. The set X={xi} allows to construct an estimator 
q*(X)

• Using an analytic method, or the RCF bound, or a MC sampling, one can 
estimate the standard deviation of q*

• The value q*+- s*
q* is then reported. What does this mean ?

• It means that in repeated estimates based on the same number N of 
observations of x, q* would distribute according to a pdf G(q*) centered 
around a true value q with a true standard deviation sq*, respectively 
estimated by q* and s*

q*

• In the large sample limit G() is a (multi-dimensional) Gaussian function
• In most interesting cases for physics G() is not Gaussian, the large sample 

limit does not hold, 1-sigma intervals do not cover 68.3% of the time the 
true parameter, and we have better be a bit more tidy in constructing 
intervals. But we need to have a hunch of the pdf f(x;q) to start with!

Pay att'n



Neyman’s Confidence interval recipe

• Specify a model which provides the probability density 
function of a particular observable x being found, for 
each value of the unknown parameter of interest: 
p(x|μ) 

• Also choose a Type-I error rate a (e.g. 32%, or 5%)
• For each , draw a horizontal acceptance interval 

[x1,x2] such that 
p (x∈[x1,x2] | μ) = 1 ‐ α. 

There are infinitely many ways of doing this: it all 
depends on what you want from your data
– for upper limits, integrate the pdf from x to infinity
– for lower limits do the opposite
– might want to choose central intervals
– or shortest intervals ?

• In general: an ordering principle is needed to 
well‐define.

• Upon performing an experiment, you measure x=x*. 
You can then draw a vertical line through it. 

 The vertical confidence interval [1,2]  (with 
Confidence Level C.L. = 1 ‐α) is the union of all values of 
μ for which the corresponding acceptance interval is 
intercepted by the vertical line.



Important notions on C. I.’s

Let the unknown true value of μ be μt . In repeated experiments, the confidence intervals 
obtained will have different endpoints [μ1, μ2], depending on the random variable x. 

A fraction C.L. = 1 –α of intervals obtained by Neyman’s contruction will contain (“cover”) the 
fixed but unknown μt :  P( μt∈[μ1, μ2]) = C.L. = 1 -α.

What is a vector ?

Also note: “repeated sampling” does not require one to perform the same experiment all
of the times for the confidence interval to have the stated properties. Can even be different 
experiments and conditions! A big issue is what is the relevant space of experiments to consider.

A vector is an element of a vector space (a set with certain properties).

defined to be “an element of a confidence set”, the latter 
being a set of intervals defined to have the property of frequentist coverage under sampling!
Similarly, a confidence interval is

It is important thus to realize two facts:
1) the random variables in this equation are μ1and μ2, and not μt ! 
2) Coverage is a property of the set, not of an individual interval ! For a Frequentist, the interval 

either covers or does not cover the true value, regardless of a. 
 Classic FALSE statement you should avoid making: 

“The probability that the true value is within 1 and 2 is 68%” ! 

The confidence interval instead does consist of those values of μ for which the 
observed x is among the most probable (in sense specified by ordering principle) to be 
observed.



More on coverage
• Coverage is usually guaranteed by the frequentist Neyman 

construction. But there are some distinguos to make

• Over-coverage: sometimes the pdf p(x|q) is discrete  it may 
not be possible to find exact boundary values x1, x2 for each q; 
one thus errs conservatively by including x values (according 
to one’s ordering rule) until Sip(xi|q)>1-a 

 q1 and q2 will overcover

• Classical example: Binomial error bars for a small 
number of trials. A complex problem! 

• The (true) variance is s=sqrt(r(1-r)/N) , but

its ESTIMATE s*=sqrt(r*(1-r*)/N) fails badly for 
small N and r*0,1

• Clopper-Pearson: intervals obtained from 
Neyman’s construction with a central interval 
ordering rule. They overcover sizeably for some 
values of the trials/successes.

• Lots of technology to improve properties 

 See Cousins and Tucker, 0905.3831 

N= 10; 68.27% coverage

Best practical advice: use “Wilson’s 
score interval” (few lines of code)

http://arxiv.org/PS_cache/arxiv/pdf/0905/0905.3831v2.pdf


Confidence Intervals and Flip-Flopping

• Here we want to understand a couple of issues that the Neyman 
construction can run into, for a very common case: the measurement of a 
bounded parameter and the derivation of upper limits on its value

• Typical observables falling in this category: cross section for a new 
phenomenon; or neutrino mass

• We take the simplifying assumption that we do 
a unbiased Gaussian-resolution measurement; 
we also renormalize measured values such that 
the variance is 1.0. In that case if μ is the true 
value, our experiment will return a value x which 
is distributed as 

observed value x

tr
u

e
 v

al
u

e 
μ

Nota bene: x may assume negative values!



Example of Neyman construction
• Gaussian measurement with known sigma (σ=1 

assumed in graph) of bounded parameter μ>=0
• Classical method for α=0.05 produces upper limit 

μ<x+1.64σ (or μ<x+1.28σ for α=0.1) (blue lines)
– for x<-1.64 this results in the empty set!

• in violation of one of Neyman’s own demands 
(confidence set does not contains empty sets)

– Also note: x<<0 casts doubt on σ=1 hypothesis 
rather than telling about value of μ the result could 
be viewed as a GoF test (analogy with contract 
bridge). Another possibility is to widen the model to 
allow σ>1

Flip-flopping: “since we observe no significant signal, we proceed to derive upper limits…”
As a result, the upper limits undercover ! (Unified approach by Feldman and Cousins solves 
the issue.)

α=0.05



The attitude that one might take, upon measuring, say, 

a higgs cross section which is negative (say if your 
backgrounds fluctuated up such that Nobs<Bexp), is to 
quote zero, and report an upper limit which, in units of 
sigma, is 

xup=sqrt(2)*ErfInverse(1-2α)

where α is the desired confidence level. Xup is such that 
the integral of the Gaussian from minus infinity to xup is 
1-α (one-tailed test).

If, however, one finds x>D, where D is one’s 
discovery threshold (say, 3-sigma or 5-sigma), one 
feels entitled to say one has “measured” a non-
zero value of the parameter – a discovery of the 
Higgs, or a measurement of a non-zero neutrino 
mass. What the physicist will then report is rather
an interval: to be consistent with the chosen test 
size α, he will then quote central intervals which 
cover at the same level:  xmeas+-E(α/2), with

E(α) = sqrt(2)*ErfInverse(1-2*α). 
The confidence belt may then take the form 
shown on the graph on the right.

α=0.10,
Z>5 discovery
threshold
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Coverage of flip-flopping experiment
• We want to write a routine that determines the true coverage of the procedure 

discussed above for a Gaussian measurement of a bounded parameter:
– xmeas<0  quote size-α upper limit as if xmeas=0, xup=sqrt(2)*ErfInverse(1-2α)
– 0<=xmeas<D quote size-α upper limit, xup=sqrt(2)*ErfInverse(1-2α) + xmeas

– xmeas>=D  quote central value +-α/2 error bars, xmeas+-sqrt(2)*ErfInverse(1-α)

Guidelines:
1. insert proper includes (we want to compile it or it’ll be too slow)
2. header: pass through it alpha, D, and N_pexp
3. define useful variables and histogram containing coverage values
4. loop on x_true values from 0 to 10 in 0.1 steps  i=0...<100 steps, x_true=0.05+0.1*i
5. for each x_true:

1. zero a counter C
2. loop many times (eg. N_pexp, defined in header)
3. throw x_meas = gRandom->Gaus(x_true,1.)
4. derive x_down and x_up depending on x_meas:

1. if x_meas<0  then x_down=0 and x_up = sqrt(2)*ErfInverse(1-2*alpha)
2. if 0<=x_meas<D then x_down=0 and x_up=x_meas+sqrt(2)*EI(1-2*alpha)
3. if x_meas>=D then x_down,up = x_meas +- sqrt(2)*EI(1-alpha)

5. if x_true is in [x_down,x_up] C++
6. fill histogram of coverage at x_true with C/N_pexp
7. plot and enjoy



Results

• Interesting typical case: alpha=0.05 – 0.1, D=4-5
• E.g. alpha=0.05, D=4.5, with N_pexp=100000: The coverage, for this special

case, can actually be computed
analytically...
Just determine the integral of 
the covered area for each region
of the belt – see next slide

Under
coverage!



Coverage.C

• void Coverage (double alpha, double disc_threshold=5.) {
• // Only valid for the following:

• // -----------------------------
• if (disc_threshold-sqrt(2)*ErfInverse(1.-2*alpha/2.)<
• sqrt(2)*ErfInverse(1.-2*alpha)) {
• cout << "Too low discovery threshold, code not suitable. " << endl;
• cout << "Try a larger threshold" << endl;
• return;
• }
• char title[100];
• int idisc_threshold=disc_threshold;
• int fracdiscthresh =10*(disc_threshold-idisc_threshold);
• if (alpha>=0.1) {
• sprintf (title, "Coverage for #alpha=0.%d with Flip-Flopping at %d.%d-

sigma",  (int)(10.*alpha),idisc_threshold, fracdiscthresh);
• } else {
• sprintf (title, "Coverage for #alpha=0.0%d with Flip-Flopping at %d.%d-

sigma",  (int)(100.*alpha),idisc_threshold, fracdiscthresh);
• }
• TH1D * Cov = new TH1D ("Cov", title, 1000, 0., 2.*disc_threshold);
• Cov->SetXTitle("True value of #mu (in #sigma units)");

• // Int Gaus-1:+1 sigma is TMath::Erf(1./sqrt(2.))
• // To get 90% percentile (1.28): sqrt(2)*ErfInverse(1.-2*0.1) 
• // To get 95% percentile (1.64): sqrt(2)*ErfInverse(1.-2*0.05)
• double cov;
• for (int i=0; i<1000; i++) {
• double mu = (double)i/(1000./(2*disc_threshold))+
• 0.5*(2*disc_threshold/1000);

• if (mu<sqrt(2)*ErfInverse(1.-2*alpha)) { // 1.28, so mu within upper 90% 
CL

• cov = 0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.)));

• } else if (mu< disc_threshold-sqrt(2)*ErfInverse(1.-2*alpha/2.)) { // 
<3.36 

• cov = 1.-alpha-0.5*(1.-TMath::Erf((disc_threshold-mu)/sqrt(2.)));

• } else if (mu<disc_threshold+

• sqrt(2)*ErfInverse(1.-2*alpha)) { // 6.28

• cov = 1.-1.5*alpha;

• } else if (mu<disc_threshold+sqrt(2)*ErfInverse(1.-2*alpha/2.) ) { // 
6.64) {

• cov = 1.-alpha/2.-0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.)));

• } else { cov = 1.-alpha; }

• Cov->Fill(mu,cov);

• }

• char filename[40];

• if (alpha>=0.1) {

• sprintf(filename,"Coverage_alpha_0.%d_obs_at_%d_sigma.eps", 
(int)(10.*alpha),idisc_threshold);

• } else {

• sprintf(filename,"Coverage_alpha_0.0%d_obs_at_%d_sigma.eps", 
(int)(100.*alpha),idisc_threshold);

• }

• TCanvas * C = new TCanvas ("C","Coverage", 500,500);

• C->cd();

• Cov->SetMinimum(1.-2*alpha);

• Cov->SetLineWidth(3);

• Cov->Draw();

• C->Print(filename);

• // Now plot confidence belt

• // ------------------------

• }

(add at the top the #include commands
needed to compile it)



Here is e.g. the exact 
calculation of coverage for 
flip-flopping at 4-sigma and a 
test size alpha=0.05

Can get it by running:

root> .L Coverage.C+;
root> Coverage(0.05,4.);



One further example of coverage

• Recall the "loaded die" example. We solved it with a likelihood maximization.

• You may modify it to compute the coverage of the likelihood intervals.  Die3a.C

By running it you will find that the coverage is only
approximate for small number of throws,
especially when your true value of the 
parameter t (the “increase in probability” 
of throws giving a 6)  lies close to the 
boundaries -1/6, 1/3.

Just add a TH1D* called “Coverage” and a 
cycle on the true parameter values, taking
care of simulating the die throws correctly
taking into account the bias t. Then you
count how often the likelihood has the true
value within its interval, as a function of the 
true value.



Summary of previous slides
• Handling nuisances is easy with toy MC; playing with them in specific 

problems allows you to get a feeling of how dependent your results are on 
the size and shape of systematic uncertainties

• Modeling a distribution is a unsolvable problem in principle; to do a fair 
job and get an approximately valid solution one needs at the very least to 
consider a wide spectrum of functional forms and a disciplined method to 
choose the right one

• Undercoverage is equivalent to reporting a smaller uncertainty than what 
you should have – it is BAD especially if you are applying Frequentist tools 
and standpoint

• Root has tons of built-in functions and tools; getting to know them will 
make you stronger in your capability of doing statistical analysis on the fly



Possible solutions



Log-normal nuisance in Poisson test

// Macro that computes p-value and Z-value of N observed vs B predicted
// Poisson counts
// --------------------------------------------------------------------
void Poisson_prob_fluct (double B, double SB, double N, int opt=1) {

double Niter=10000;

if (opt!=0 && opt!=1) {
cout << "Please put fourth argument either =0 (Gaussian nuisance)" << endl;
cout << "or =1 (LogNormal nuisance)" << endl;
return;

}

int maxN = N*2;
TH1D * Pois = new TH1D ("Pois", "", maxN, -0.5, maxN-0.5);
TH1D * PoisGt = new TH1D ("PoisGt", "", maxN, -0.5, maxN-0.5);

// We throw a random Gaussian smearing SB to B, compute P,
// and iterate Niter times; we then study the distribution
// of p-values, extracting the average 

double Psum=0;
TH1D * Pdistr = new TH1D ("Pdistr", "", 100, -10., 0.);
TH1D * TB = new TH1D ("TB", "",100, B-5*SB,B+5*SB);

if (opt==0) { // nornal
mu = B;
sigma = SB;

} else { // lognormal
mu = log(B); // median! omitting the convexity correction -sigma*sigma/2;
sigma = SB/B;

}

for (int iter=0; iter<Niter; iter++) {

// Extract B from G(B,SB)

double thisB = gRandom->Gaus(mu,sigma);  // normal

if (opt==1) thisB = exp(thisB); // lognormal

TB->Fill(thisB);

if (thisB<=0) thisB=0.;

double sum=0.;

double fact=1.;

for (int i=0; i<maxN || (opt==0 && i<B+6*SB) || (opt==1 && 
i<mu+10*sigma); i++) {

if (i>1) fact*=i;

double poisson = exp(-thisB)*pow(thisB,i)/fact;

if (i<N) sum+= poisson;

Pois->Fill((double)i,poisson);

if (i>=N) PoisGt->Fill((double)i,poisson);

}

double thisP=1-sum;

if (thisP>0) Pdistr->Fill(log(thisP));

Psum+=thisP;

}

double P = Psum/Niter;

double Z = sqrt(2) * ErfInverse(1-2*P);

cout << "Expected P of observing N=" << N << " or more events if B=" 

<< B << "+-" << SB << " : P= " << P << endl;

cout << "This corresponds to " << Z << " sigma for a Gaussian one-tailed 
test." << endl;



Exponential model in F-test
double y = gRandom->Uniform(0.,1.);   

// Generate histogram of data according to different pdfs
// ------------------------------------------------------
if (option==0) {
// int(0:x) dt = x
// quindi genero y=uniform(0:1) e prendo
// x=y*xmax 
Data0->Fill(y*xmax);
Data1->Fill(y*xmax);
Data2->Fill(y*xmax);
Data3->Fill(y*xmax);

} else if (option==1) {
// int(0:x) t dt = x^2/2
// quindi genero y=uniform(0:1) e prendo
// x=sqrt(2*y*xmax^2/2)
Data0->Fill(sqrt(y*xmax*xmax));
Data1->Fill(sqrt(y*xmax*xmax));
Data2->Fill(sqrt(y*xmax*xmax));
Data3->Fill(sqrt(y*xmax*xmax));

} else if (option==2) {
// int(0:x) t^2 dt = x^3/3
// quindi genero y=uniform(0:1) e prendo
// x=pow(y,1/3)*xmax
Data0->Fill(pow(y,0.33333)*xmax);
Data1->Fill(pow(y,0.33333)*xmax);
Data2->Fill(pow(y,0.33333)*xmax);
Data3->Fill(pow(y,0.33333)*xmax);

} else if (option==3) {
// int(0:x) e(-t) dt = (1-e^-x)
// quindi genero y=uniform e prendo
// x=-log(1-y*(1-exp(-xmax)))
Data0->Fill(-log(1-y*(1-exp(-xmax))));
Data1->Fill(-log(1-y*(1-exp(-xmax))));
Data2->Fill(-log(1-y*(1-exp(-xmax))));
Data3->Fill(-log(1-y*(1-exp(-xmax))));

}
}

For full code, see
http://www.pd.infn.it/%7Edorigo/F_test_commented.C

Piece to be added to former version of code



Coverage of Flip-flopping measurement
void FlipFlop (double alpha=0.05, double D=4.5, double Npexp=1000) {

double x_true;

double x_meas; 

double sigma = 1;

double x_down;

double x_up;

double covers=0.;

double EIa = sqrt(2)*TMath::ErfInverse(1-alpha);

double EI2a= sqrt(2)*TMath::ErfInverse(1-2*alpha);

TH1D * Coverage_vs_xtrue = new TH1D("Coverage_vs_xtrue", "Coverage vs x_true", 100, 0., 10.);

TH1D * BeltUp = new TH1D ("BeltUp", "Flip-flopping Confidence belt", 15000, -5.,10.);

TH1D * BeltDo = new TH1D ("BeltDo", "Flip-flopping Confidence belt", 15000, -5.,10.);

cout << "Critical values: " << endl;

cout << "For xmeas < 0 : 0 < xtrue < " << EI2a*sigma << endl;

cout << "For 0<xmeas<" << D << " : 0 < xtrue < xmeas+" 

<< EI2a*sigma << endl;

cout << "For xmeas>=D : xmeas-" << EIa*sigma << " < xtrue < xmeas+" 

<< EIa*sigma << endl;

cout << endl;

for (int ix=0; ix<100; ix++) {

x_true = 0.05 + 0.1*ix;

covers=0;

for (int pexp=0; pexp<Npexp; pexp++) {

// A Gaussian measurement with uncertainty sigma

x_meas = gRandom->Gaus(x_true,sigma);

if (x_meas<D) {  // Not significantly different from zero, will report upper limit

x_down = 0;

x_up = EI2a*sigma;

if (x_meas>0) x_up = x_meas + x_up; 

} else { // will report an interval

x_down = x_meas-EIa*sigma;

x_up = x_meas+EIa*sigma;

}

// compute coverage

if (x_true>=x_down && x_true<x_up) covers++;

}

Coverage_vs_xtrue->Fill(x_true,covers/Npexp);

}

// Belt plot

for (int i=0; i<15000; i++) {

x_meas = -4.9995 + i*0.001;

if (x_meas<0) {

BeltUp->Fill(x_meas,EI2a);

BeltDo->Fill(x_meas,0.);

} else if (x_meas<D) {

BeltUp->Fill(x_meas,x_meas+EI2a);

BeltDo->Fill(x_meas,0.);

} else {

BeltUp->Fill(x_meas,x_meas+EIa);

BeltDo->Fill(x_meas,x_meas-EIa);

}

}

gStyle->SetOptStat(0);

TCanvas * W2 = new TCanvas ("W2", "Coverage of flip-flopping NP construction", 500, 500);

W2->cd();

Coverage_vs_xtrue->SetLineWidth(3);

Coverage_vs_xtrue->Draw();

TCanvas * W = new TCanvas ("W", "Confidence belt", 500, 500);

W->cd();

BeltUp->SetMinimum(-1);

BeltUp->SetMaximum(15);

BeltUp->SetLineWidth(3);

BeltDo->SetLineWidth(3);

BeltUp->Draw();

BeltDo->Draw("SAME");

}



Exact calculation of coverage

void Coverage (double alpha, double disc_threshold=5.) {

gStyle->SetOptStat(0);

// Only valid for the following:
// -----------------------------
if (disc_threshold-sqrt(2)*ErfInverse(1.-2*alpha/2.)<

sqrt(2)*ErfInverse(1.-2*alpha)) {
cout << "Too low discovery threshold, code not suitable. " << endl;
cout << "Try a larger threshold" << endl;
return;

}

char title[100];
int idisc_threshold=disc_threshold;
int fracdiscthresh =10*(disc_threshold-idisc_threshold);
if (alpha>=0.1) {

sprintf (title, "Coverage for #alpha=0.%d with Flip-Flopping at %d.%d-sigma", 
(int)(10.*alpha),idisc_threshold, fracdiscthresh);

} else {
sprintf (title, "Coverage for #alpha=0.0%d with Flip-Flopping at %d.%d-sigma", 

(int)(100.*alpha),idisc_threshold, fracdiscthresh);

}
TH1D * Cov = new TH1D ("Cov", title,

1000, 0., 2.*disc_threshold);
Cov->SetXTitle("True value of #mu (in #sigma units)");

// Int Gaus-1:+1 sigma is TMath::Erf(1./sqrt(2.))
// To get 90% percentile (1.28): sqrt(2)*ErfInverse(1.-2*0.1) 
// To get 95% percentile (1.64): sqrt(2)*ErfInverse(1.-2*0.05)

double cov;
for (int i=0; i<1000; i++) {

double mu = (double)i/(1000./(2*disc_threshold))+
0.5*(2*disc_threshold/1000);

if (mu<sqrt(2)*ErfInverse(1.-2*alpha)) { // 1.28, so mu within upper 90% CL
cov = 0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.)));

} else if (mu< disc_threshold-sqrt(2)*ErfInverse(1.-2*alpha/2.)) { // <3.36 
cov = 1.-alpha-0.5*(1.-TMath::Erf((disc_threshold-mu)/sqrt(2.)));

} else if (mu<disc_threshold+
sqrt(2)*ErfInverse(1.-2*alpha)) { // 6.28

cov = 1.-1.5*alpha;
} else if (mu<disc_threshold+sqrt(2)*ErfInverse(1.-2*alpha/2.) ) { // 6.64) {
cov = 1.-alpha/2.-0.5*(1+TMath::Erf((disc_threshold-mu)/sqrt(2.)));

} else {
cov = 1.-alpha;

}
Cov->Fill(mu,cov);

}

char filename[40];
if (alpha>=0.1) {

sprintf(filename,"Coverage_alpha_0.%d_obs_at_%d_sigma.eps", 
(int)(10.*alpha),idisc_threshold);

} else {
sprintf(filename,"Coverage_alpha_0.0%d_obs_at_%d_sigma.eps", 

(int)(100.*alpha),idisc_threshold);
}
TCanvas * C = new TCanvas ("C","Coverage", 500,500);
C->cd();
Cov->SetMinimum(1.-2*alpha);
Cov->SetLineWidth(3);
Cov->Draw();
C->Print(filename);



Testing Hypotheses



Hypothesis testing: generalities
We are often concerned with proving or disproving a theory, or comparing and
choosing between different hypotheses the most credible one, based on some data.

In general this is a different problem than that of estimating a parameter, but the two
are tightly connected.

If nothing is known a priori about a parameter, naturally one uses the data to estimate it;
if however a theoretical prediction exists on a particular value, the problem is more
proficuously formulated as a test of hypothesis.

Within the realm of hypothesis testing one
must distinguish what are more aptly called goodness-of-fit tests:
in that case there is only one hypothesis
(e.g. a particular value of a parameter 
as opposed to any other value), so some of the 
possible techniques are not applicable

A hypothesis is simple if it is completely
specified; otherwise (e.g. if depending on
the unknown value of a parameter) it is called composite.



Hypothesis Testing: Ingredients
• H0: null hypothesis 
• H1: alternate hypothesis
• Three main parameters in the game:

– a: type-I error rate; probability that H0 is true although you accept the 
alternative hypothesis

– b: type-II error rate; probability that you fail to claim a discovery (accept H0) 
when in fact H1 is true

– q, parameter of interest (describes a continuous hypothesis, for which H0 is a 
particular value). E.g. q=0 might be a zero cross section for a new particle

• Common for H0 to be nested in H1

Can compare different methods by plotting a vs b vs the 
parameter of interest

- Usually there is a tradeoff between a and b; often a 
subjective decision, involving cost of the two different errors. 
- Tests may be more powerful in specific regions of an interval 
(e.g. a Higgs mass)

NB: There is a 1-to-1 correspondence between hypothesis 
tests and interval construction. In fact a test of s=0 for a 
new particle signal equates to asking whether s=0 is in the 
confidence interval. 

Above, a smaller a is paid for 
by a larger type-II error
rate (yellow area) 
 smaller power 1-b



Alpha vs Beta and 
power graphs

• Choice of a and b is conflicting: where to stay in 
the curve provided by your analysis method highly 
depends on habits in your field

• What makes a difference is the test statistic. N-P 
likelihood-ratio test, when available, outperforms 
others (NP lemma, see next slide)

• As data size increases, power curve becomes closer 
to step function

The power of a test usually also
depends on the parameter of 
interest: different methods may 
have better performance in 
different parameter space points
UMP (uniformly most powerful):
has the highest power for any q



The Neyman-Pearson Lemma
• For simple hypothesis testing there is a recipe to find the most powerful test. It is 

based on the likelihood ratio.
• Take data X={X1…XN} and two hypotheses depending on 

the values of a discrete parameter: H0={θ=θ0} vs H1{θ=θ1}. 
If we write the expressions of size α and power 1-β we have

The problem is then to find the critical region wα such that 1-β is maximized, given α. 
We rewrite the expression for power as

which is an expectation value:

This is maximized if we accept in wα all the values for which

So one chooses H0 if  
and H1 if instead

In order for this to work, the likelihood ratio must be defined in all space; hypotheses 
must be simple. The test above is called Neyman-Pearson test, and a test with such 
properties is the most powerful.
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Treatment of Systematic Uncertainties

• Statisticians call these nuisance parameters
• Any measurement in HEP is affected by them: the turning of an observation into a 

measurement requires assumptions about parameters and other quantities whose exact 
value is not perfectly known  their uncertainty affects the main measurement
– Going from a event count to a cross section requires knowing Nb, L, esel, etrig …
– measurements which are subsidiary to the main result

• Inclusion of effect of nuisances in interval estimation and hypothesis testing introduces 
complications. Each of the methods has recipes, but not universal nor always applicable
– Bayesian treatment: one constructs the multi-dimensional prior pdf p(q)Pip(li) including all the 

parameters li, multiplies by p(X0|q,l), and integrates all of the nuisances out, remaining with p(q|X0)
– Classical frequentist treatment: scan the space of nuisance parameters; for each point do Neyman 

construction, obtaining multi-dimensional confidence region; project on parameter of interest
– Likelihood ratio: for each value of the parameter of interest q*, one finds the value of nuisances that 

globally maximizes the likelihood, and the corresponding L(q*). The set of such likelihoods is called the 
profile likelihood.

• Each “method” has problems  (B: multi-D priors; C: overcoverage and intractability; L: 
undercoverage) – will not discuss them here, but note that this is a topic at the forefront of 
research, for which no general recipe is valid. 

• Often used are “hybrid” methods for integrating nuisance parameters out: for instance,
treat nuisance parameters in a Bayesian way while treating the parameter of interest in a 
frequentist way, or “profile away” the nuisance parameters and then use any method. Also 
possible is using Bayesian techniques and then evaluate their coverage properties.



Notes on Goodness-of-fit tests

• If H0 is specified but the alternative H1 is not, then only the Type I error rate α 
can be calculated, since the Type II error rate β depends on having specified a 
particular H1. 
In this case the test is called a test for goodness-of-fit (to H0).

• Hence the question “Which g.o.f. test is best?” is ill-posed, since the power 
depends on the alternative hypothesis, which is not given. 

• In spite of the popularity of tests which give a statistic from which a p-value 
can more readily be computed (in particular χ2 and Kolomogorov tests), their 
ability to discriminate against variations with respect to H0 may be poor, i.e. 
they may have  small power (1-β) against relevant alternative hypotheses
– χ2  throws away information (sign, ordering)
– Kolmogorov –Smirnov test only sensitive to biases, not to shape variations, and 

has terrible performance on tails

• It is in general hard to define what is random and what is not. Imagine you 
get three p-values of the null hypothesis: would you like to see them evenly 
spaced in [0,1] ? Would it induce you to doubt of the null if they all came out 
within 0.01 of 0.5 ? What if they are all close to 0.624 ? Or all close to zero ?



More on GoF

• Note the duality with confidence intervals: one might test the 
hypothesis q=qtest using q* as test statistic. If we define the region 
q*>=q*

obs as having equal or less agreement with the hypothesis 
than the result obtained, then the p-value of the test is a.
– but for the c.i. the probability a is specified first, and the value qtest is 

the random variable (depends on data); in a G.o.F. test for qtest, we 
specify qtest and the p-value is the result.

• In HEP, despite their limitations, Goodness-of-Fit tests are useful for 
a number of applications:
– consistency checks
– defining a control region
– model testing

• The job of the experimenter is to find a suitable test statistic, and a 
region of interest of the latter. An example will clarify matters.



Choosing the region of interest
• Feynman’s example: 

“Upon walking here this morning, the strangest thing ever 
happened to me. A car passed by, and I could read the 
plate: JKZ 0533. How weird is that ??! The probability that I 
saw such a combination of letters and numbers (assuming 
they are all used in this country) is one in 10000*263, or 
one in eighty-eight millions!”

Correct… The paradox arises from not having defined 
beforehand the region of interest!

• A more common one: you have a counting experiment 
where background is predicted to be 100 events. You 
observe  80 events. How rare is that ?

– Ill-posed question ! Depends, to say the least, on whether 
you are interested only in excesses or in absolute 
departures! 

– In the first case the region of interest is N>=x, which, for 
x=80, corresponds to a fractional area p = 0.977. 

– In the second case, the region of interest is |N-100|>=|x-
100| which for x=80 has an integral p = 0.0455.

– And one might imagine other ways to answer – a no-
brainer being p=e-100 10080/80! 



Combination of p-values
• Suppose you have several p-values, derived from different, independent tests. You 

may ask yourself several questions with them.
– What is the probability that the smallest of them is as small as the one I got ?
– What is the probability that the largest one is as small as the largest I observed ?
– What is the probability that the product is as small as the one I can compute with these N values ?

• Please note! Your inference on the data at hand strongly depends on what test you 
perform, for a given set of data. In other words, you cannot choose which test to run 
only upon seeing the data…

• Suppose anyway you believe that each p-value tells something about the null 
hypothesis you are testing, so you do not want to discard any of them. Then one 
reasonable (not the optimal!) thing to do is to use the product of the N values. The 
formula providing the cumulative distribution of the density of x=Πxi can be derived 
by induction (see [Roe 1992], p.129) and is

This accounts for the speed with which the product of N numbers in [0,1] tends to 
zero as N grows. 

Note, this is just one of MANY ways to construct a single statistic from several p-values.
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Some examples
To start let us take five really uniformly 
distributed p-values, x1=0.1, x2=0.3, x3=0.5, 
x4=0.7, x5=0.9.  Their product is 0.00945, and 
with the formula just seen we get 
P(0.00945)=0.5017. As expected.

• And what if instead x1=0.00001, x2=0.3, x3=0.5, 
x4=0.7, x5=0.9 ? The result is P(9.45*10-7) 
=0.00123, which is rather large: one might think 
that the chance of getting one in five numbers 
as small as 10-5 must occur only a few times in 
10-5. But we are testing the product, not the 
smallest of the five numbers !

• And if now we let x1=0.05, x2=0.10, x3=0.15, 
x4=0.20, x5=0.25, the test for the product yields 
P(3.75*10-5)=0.0258 (see picture on the right). 
Also not a compelling rejection of the null… 
Compare with what you would get if you had 
asked “what is the chance that five numbers are 
all smaller than 0.25 ?”, whose answer is 
(0.25)5=0.00098. This demonstrates that the a-
posteriori choice of the test is to be avoided !

pdf of f(Πxi)

Cumulative of the pdf f(Πxi)



GoF tests with Max Likelihood
• The maximum likelihood is a powerful method to estimate parameters, 

but no measure of GoF is given, because the expected value of L at 
maximum is not known, even under the hypothesis that the data are 
indeed sampled from the pdf model used in the fit

• The distribution of Lmax can be studied with toy MC  one derives a p-
value that a value as small as the one observed in the data arises, under 
the given assumptions

• Alternatively, one can bin the data, obtaining estimated mean values of 
entries per bin from the ML fit: 

Then one can derive a c2
L statistic using the ratio of likelihoods 

and computing 

since in this case the latter follows a c2 distribution. 

The quantity l()=L(n|)/L(n|n) differs from the likelihood function by a 
normalization factor, and can thus be used for both parameter estimation 
and Goodness of fit.
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Conclusions
• Statistics is NOT trivial.  Not even in the simplest applications!
• A understanding of the different methods to derive results (eg. for upper limits) is crucial 

to make sense of the often conflicting results one obtains even in simple problems
– The key in HEP is to try and derive results with different methods –if they do not agree, we get wary 

of the results, plus we learn something

• Making the right choices for what method to use is an expert-only decision, so…
You should become an expert in Statistics, if you want to be a good particle physicist (or 
even if you want to make money in the financial market)

• The slide of this course are nothing but an appetizer. To really learn the techniques, you 
must put them to work

• Be careful about what statements you make based on your data! You should now know 
how to avoid:
– Probability inversion statements: “The probability that the SM is correct given that I see such a 

departure is less than x%”
– Wrong inference on true parameter values: “The top mass has a probability of 68.3% of being in the 

171-174 GeV range”
– Apologetic sentences in your papers: “Since we observe no significant departure from the 

background, we proceed to set upper limits”
– Improper uses of the Likelihood: “the upper limit can be obtained as the 95% quantile of the 

likelihood function”
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Stuff I Should Perhaps Skip



Eye fitting: Sensitivity to bumps

• I will discuss the quantification of a signal’s significance later on. For now, 
let us only deal with our perception of it.

• In our daily job as particle physicists, we develop the skill of seeing bumps 
–even where there aren’t any

• It is quite important to realize a couple of things:
1) a likelihood fit is better than our eye at spotting these things  we should 

avoid getting enamoured with a bump, because we run the risk of fooling 
ourselves by biasing our selection, thus making it impossible to correctly 
estimate the significance of a fluctuation

2) we need to always account for the look-elsewhere effect before we even 
caress the idea that what we are seeing is a real effect
- Note that, on the other hand, a theorist with a model in his or her pocket (e.g. one predicting a 
specific mass) might not need to account for a LEE – we will discuss the issue later on

3) our eye is typically more likely to pick up a tentative signal in some situations 
rather than others – see point one. 

4) I will try a practical demonstration of the above now.



Order by significance:

• Assume the background is 
flat. Order the three bumps 
below in descending order 
of significance (first=most 
significant, last=least 
significant)

• Don’t try to act smart – I 
know you can. I want you to 
examine each histogram and 
decide which would honestly 
get you the most excited…

• Let’s take stock.

A

C

B



Issues with eye-spotting of bumps

• We tend to want all the data points to agree with our imagined bump hypothesis
– easier for a few-bin bump than for a many-bin one
– typical “eye-pleasing” size: a three-bin bump
– We give more importance to outliers than needed

• We usually forget to account for the multiplicity of places where a bump could build up 
(correctable part of Look-Elsewhere Effect)

• In examples of previous page, all bumps had the same local significance (5 sigma); 
however, the most significant one is actually the widest one, if we specified in advance 
the width of the signal we were looking for! That’s because of the smaller number of 
places it could arise.

• The nasty part: we typically forget to account for the multiplicity of histograms and 
combinations of cuts we have inspected 
– this is usually impossible to correct for!

• The end result: before internal review, 4-sigma effects happen about 1000 times more 
frequently than they should.

• And some survive review and get published! 



One example: the Girominium

• CDF, circa 2000

• Tentative resonance found in proton-
antiproton collisions. Fundamental state has 
mass 7.2 GeV

• Decays to muon pairs; hypothesized bound 
state of scalar quarks with 1-- properties

• Narrow natural width  observable width 
comparable to resolution

• Significance: 3.5s

• Issue: statistical fluctuation, wide-context LEE

Phys.Rev.D72:092003,2005



Evaluating significance: one note
• In HEP and astro-HEP a common problem is the evaluation of a significance in a 

counting experiment. Significance is usually measured in “number of sigmas”

• We have already seen examples of this. It is common to cast the problem in terms of a 
Goodness-of-Fit test of a null hypothesis H0

• Expect b events from background, test for a signal contributing s events by a Poisson 
experiment: then

f(n|b+s) = (b+s)n e-(b+s)/n!

• Upon observing Nobs, can assign a probability to the observation as 

• Of course, this is not the probability of H0 being true !! It is the probability that, H0
being true, we observe Nobs events or more

• Take b=1.1, Nobs=10: then p=2.6E-7  a 5σ discovery. Similar for b=0.05, Nobs=4. 

• Please note: if you use a small number of events to measure a cross section, you will 
have large error bars (whatever your method of evaluating a confidence interval for the 
true mean!). For instance if b=0, N=5, Likelihood-ratio intervals give 3.08 < s < 7.58, i.e. 
s=5-1.92

+2.58 . Does that mean we are less than 3-sigma away from zero ? NO !
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Bump hunting: Wilks’ theorem

• A typical problem: test for the presence of a Gaussian signal on top of a smooth 
background, using a fit to B(M) (H0: null hypothesis) and a fit to B(M)+S(M) (H1: 
alternative hypothesis)

• This time we have both H0 and H1. One can thus easily derive the local significance 
of a peak from the likelihood values resulting from fits to the two hypotheses. The 
standard recipe uses Wilks’ theorem:
– get L0, L1

– evaluate -2ΔLogL
– Obtain p-value from probability that χ2(Νdof)>-2ΔLogL
– Convert into number of sigma for Gaussian distribution using the inverse of the error function
– Four lines of code !

• Convergence of -2ΔlnL to χ2 distribution is fast. But certain regularity conditions 
need to hold! In particular, models need to be nested, and we need to be away 
from a boundary in the parameter of interest. 
– In principle, allowing the mass of the unknown signal to vary in the fit violates the conditions 

of Wilks’ theorem, since for zero signal normalization H0 corresponds to any H1(M) (mass is 
undefined under H0: it is a nuisance parameter present only in the alternative hypothesis); 

– But it can be proven that approximately Wilks’ theorem still applies (see [Gross 2010])
– Typically one runs toys to check the distribution of p-values
– but this is not always practical

• Upon obtaining the local significance of a bump, one needs to account for the 
multiplicity of places where the signal might have arisen by chance.
– Is rule of thumb valid ?   TF = (Mmax-Mmin)/σM



More on the Look-Elsewhere Effect
• The problem of accounting for the multiplicity of places where a signal could have arisen by 

chance is apparently easy to solve:
– Rule of thumb ?
– Run toys by simulating a mass distribution according to H0 alone, with N=Nobs (remember: thou shalt 

condition!), deriving the distribution of -2ΔlnL

• Running toys is sometimes impractical (see Higgs combination); it is also illusory to believe 
one is actually accounting fully for the trials factor
– In typical analyses one has looked at a number of distributions for departures from H0

– Even if the observable is just one (say a Mjj) one often is guilty of having checked many possible cut 
combinations

– If a signal appears in a spectrum, it is often natural to try and find the corner of phase space where it is 
most significant; then “a posteriori” one is often led into justifying the choice of selection cuts

– A HEP experiment runs O(100) analyses on a given dataset and O(1000) distributions are checked for 
departures. A departure may occur in any one of 20 places in a histogram  trials factor is O(20k)

– This means that one should expect a 4-sigma bump to naturally arise by chance in any given HEP 
experiment !  (Well borne out by past experience…) Beware of quick conclusions!

• In reality the trials factor depends also on the significance of the local fluctuation (which can 
be evaluated by fixing the mass, such that ΔNdof=1). Gross and Vitells [Vitells 2010] 
demonstrate that a better “rule of thumb” is provided by the formula

where k  is typically 1/3 and can be estimated by counting the average number of local 
minima  <N>=k (Mmax-Mmin)/σM
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Higgs Searches at LHC
• The Higgs boson has been sought by ATLAS and CMS in all the main production processes 

and in a number of different final states, resulting from the varied decay modes:
– qqHqq
– ggH
– qq(‘)

VH

– HZZ
– HWW
– Hgg
– Htt
– Hbb

• The importance of the goal  brought together some of the best minds of CMS and ATLAS, to 
define and refine the procedures to combine the above many different search channels, 
most of which have marginal sensitivity by themselves

• The method used to set upper limits on the Higgs boson cross section is called CLs and the 
test statistics is a profile log-likelihood ratio. Dozens of nuisance parameters, with either 0% 
or 100% correlations, are considered

• Results have been produced as a combined upper limit on the “strength modifier” μ=σ/σSM, 
as well as a “best fit value” for μ, and a combined p-value of the null hypothesis. All of these 
are produced as a function of the unknown Higgs boson mass.

• The technology is an advanced topic. We can give a peek at the main points, including the 
construction of the CLs statistics and the treatment of nuisances, to understand the main 
architecture



Nuts and Bolts of Higgs Combination
The recipe must be explained in steps. The first one is of course the one of writing down extensively the 
likelihood function!

1) One writes a global likelihood function, whose parameter of interest is the strength modifier μ. If s and 
b denote signal and background, and θ is a vector of systematic uncertainties, one can generically write 
for a single channel:

Note that θ has a “prior” coming from a hypothetical auxiliary measurement. 
In the LHC combination of Higgs searches, nuisances are treated in a frequentist way
by taking for them the likelihood which would have produced as posterior, given a flat prior,
the PDF one believes the nuisance is  distributed from. This differs from the Tevatron and LEP
Higgs searches.

In L one may combine many different search channels where a counting experiment is performed as 
the product of their Poisson factors:

or from a unbinned likelihood over k events, factors such as:



2) One then constructs a profile likelihood test statistic qμ as

Note that the denominator has L computed with the values of μ^ and θ^ that globally 
maximize it, while the numerator has θ=θ^

μ computed as the conditional maximum 
likelihood estimate, given μ.  
A constraint is posed on the MLE μ^ to be confined in 0<=μ^<=μ: this avoids negative 
solutions for the cross section, and ensures that best-fit values above the signal 
hypothesis μ are not counted as evidence against it.

The above definition of a test statistic for CLs in Higgs analyses differs from earlier 
instantiations
- LEP: no profiling of nuisances
- Tevatron: μ=0 in L at denominator

3) ML values θμ
^ for H1 and θ0

^ for H0

are then computed, given the data
and μ=0 (bgr-only) and μ>0 

4) Pseudo-data is then generated for the 
two hypotheses, using the above ML 
estimates of the nuisance parameters. 
With the data, one constructs the pdf 
of the test statistic given a signal of 
strength μ (H1) and μ=0 (H0). This way
has good coverage properties.



5) With the pseudo-data one can then compute the integrals defining p-values for the two 
hypotheses. For the signal plus background hypothesis H1 one has

and for the null, background-only H0 one has

6) Finally one can compute the value called CLs as 

CLs = pμ/(1-pb)

CLs is thus a “modified” p-value, in the sense that it describes how likely it is that the 
value of test statistic is observed under the alternative hypothesis by also accounting for 
how likely the null is: the drawing incorrect inferences based on extreme values of pμ is 
“damped”, and cases when one has no real discriminating power, approaching the limit 
f(q|μ)=f(q|0), are prevented from allowing to exclude the alternate hypothesis. 

7) We can then exclude H1 when CLs < α, the (defined in advance !) size of the test. In the 
case of Higgs searches, all mass hypotheses H1(M) for which CLs<0.05 are said to be 
excluded (one would rather call them “disfavoured”…)



Derivation of expected limits

One starts with the background-only 
hypothesis μ=0, and determines a 
distribution of possible outcomes of 
the experiment with toys, obtaining 
the CLs test statistic distribution for 
each investigated Higgs mass point

From CLs one obtains the PDF of upper 
limits μUL on μ for each Mh. [E.g. on the 
right we assumed b=1 and s=0 for μ=0,
whereas μ=1 would produce <s>=1]

Then one computes the cumulative 
PDF of μUL

Finally, one can derive the median and 
the intervals for μ which correspond to 
2.3%, 15.9%, 50%, 84.1%, 97.7% 
quantiles. These define the “expected-
limit bands” and their center.



Quantifying the significance of a signal 
in the Higgs search

• To test for the significance of an excess of events, given a Mh 
hypothesis, one uses the bgr-only hypothesis and constructs 
a modified version of the q test statistic:

• This time we are testing any μ>0 versus the H0 hypothesis. 
One builds the distribution f(q0|0,θ0

^obs) by generating 
pseudo-data, and derives a p-value corresponding to a given 
observation as 

• One then converts p into Z using the relation 

where pχ
2 is the survival function for the 1-dof chisquared.

• Often it is impractical to generate large datasets given the 
complexity of the search (dozens of search channels and 
sub-channels, correlated among each other). One then relies 
on a very good asymptotic approximation:

• The derived p-value and the corresponding Z value are 
“local”: they correspond to the specific hypothesis that has 
been tested (a specific Mh) as q0 also depends on Mh (the 
search changes as Mh varies)

• When dealing with many searches, one needs to get a global 
p-value and significance, i.e. evaluate a trials factor. How to 
do it in complex situations is explained in the next slide.



Trials factors in the Higgs search

When dealing with complex cases (Higgs combination), a study  comes to help. 

Wilks’ theorem does not apply, and the complication of combining many different search 
channels makes the option of throwing huge number of toys impractical

Fortunately it has been shown how the trials factor can be counted in. First of all one defines 
a test statistic encompassing all possible Higgs mass values:

This is the maximum of the test statistic defined above for the bgr-only, across the many tests 
performed at the various possible masses of the Higgs boson.

One can use an asymptotic “regularity” of the distribution of the above q to get a 
global p-value by using a technique  derived by Gross and Vidells [Vitells 2010].



Local minima and upcrossings

One counts the number of “upcrossings” of the distribution of the test statistic, as a function 
of mass. Its wiggling tells you how many independent places you have been searching in.
The number of local minima in the fit to a distribution is closely connected to the freedom of 
the fit to pick signal-like fluctuations in the investigated range

The number of times that the test statistic (below, the likelihood ratio between H1 and H0) 
crosses some reference point is a measure of the trials factor. One estimates the global p-
value with the number N0 of upcrossings from a minimal value of the q0 test statistics (for 
which p=p0) by the formula

The number of upcrossings can be best estimated
using the data themselves at a low value of 
significance, as it has been shown that the
dependence on Z is 
a simple negative 
exponential:



Example
• Imagine that you scan the Higgs mass and find a maximum q0 of 9, 

which according to 

corresponds to a local p-value of 0.13% and a local Z-value of 3σ, 
the latter computed using

• You then look at the distribution of q0 as a function of Mh and count 
the number of upcrossings at a level u0=1 (where the significance is 
Z=1 as per above formulas) finding that there are 8 of them. You 
can then get <Nu> for u=9 using

which gives <Nu>=0.1465

• The global p-value can be then computed as pglob=0.1465+0.0013 
using the formula below. One concludes that the trial factor is 
about 100 in this case.


