

Deep Learning

Elisa Ricci
University of Perugia

Outline

● Introduction to Deep Learning
● Brief history of Neural Networks
● Deep Learning

● Recent technical advances
● Models: Autoencoders, CNN, RNN

● Open problems
● Deep Learning Hands-on

The AI Revolution

Computer Vision

Computer Vision
● Amazing progresses in the last few years with Convolutional

Neural Networks (CNNs).

1.4M images, 1K categories

(2009)

Computer Vision
● Amazing progresses in the last few years with Convolutional

Neural Networks (CNNs).

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

 Traditional ML
vs

Deep models
vs

Human

Speech Processing
● Machine translation.

Rick Rashid in Tianjin, China, October, 25, 2012

A voice recognition program translated a speech given by

Richard F. Rashid, Microsoft’s top scientist, into Mandarin Chinese.

https://www.youtube.com/watch?v=Nu-nlQqFCKg

Speech Processing

● Text To Speech WaveNet.

https://www.youtube.com/watch?v=CqFIVCD1WWo

Creativity

● Style Transfer.

[Ruder et al.]

https://www.youtube.com/watch?v=Khuj4ASldmU&t=13s

Creativity

● Generate Donald Trump’s Twitter eruptions.

https://twitter.com/deepdrumpf

Machine Learning vs Deep Learning

 2002 2012

Deep Learning

● What is deep learning?

● Why is it generally better than traditional ML methods on
image, speech and certain other types of data?

Deep Learning

● What is deep learning?

Deep Learning means using a neural network with several layers of
nodes between input and output

input
output

hidden hidden hidden

More formally
● A family of parametric models which learn non-

linear hierarchical representations:

parameters
of layer L

non-linear
activation

parameters
of the network

input

… and informally

Deep Learning
● Why is it generally better than other ML methods on

image, speech and certain other types of data?

The series of layers between
input and output compute
relevant features
automatically
in a series of stages, just as our
brains seem to.

Deep Learning

...but neural networks have been around for 25 years...
So, what is new?

Biological neuron

• A neuron has
– Branching input (dendrites)
– Branching output (the axon)

• Information moves from the dendrites to the axon via the cell body

• Axon connects to dendrites via synapses
– Synapses vary in strength
– Synapses may be excitatory or inhibitory

Axon

Dendrites

Cell body or Soma

Nucleus

Synapses

Perceptron
An Artificial Neuron (Perceptron) is a non-linear
parameterized function with restricted output range

Σ h

x1

x2

x3

x4

x5

w1

w2w3

w4

w5

inputs

activation
function

output

Biological neuron and Perceptron

Axon

Dendrites

Cell body or Soma

Nucleus

Synapses

Σ h

x1

x2

x3

x4

x5

w1

w2w3

w4

w5

inputs

activation
function

output

Dendrite

Cell Body

 Axon

Brief History of Neural Networks

[VUNO]

1943 – McCulloch & Pitts Model

● Early model of artificial neuron
● Generates a binary output
● The weights values are fixed

Σ

x1

x2

x3

x4

x5

w1

w2w3

w4

w5

inputs

Threshold

output

1958 – Perceptron by Rosemblatt

● Perceptron as a machine for linear classification
● Main idea: Learn the weigths and consider bias.

● One weight per input
● Multiply weights with respective inputs and add bias
● If result larger than threshold return 1, otherwise 0

Σ h

x1

x2

x3

x4

x5

w1

w2w3

w4

w5

inputs

activation
function

output

b

1

Activation functions

First AI winter

● The exclusive or (XOR) cannot be
solved by perceptrons

● Neural models cannot be applied
to complex tasks

First AI winter

● But, can XOR be solved by neural
networks?
● Multi-layer perceptrons (MLP)

can solve XOR
● Few years later Minsky built such

MLP

x1 x2 xn…..

Hidden
layer

Hidden
layer

Output
layer

Multi-layer feed forward Neural Network
● Main idea:

● Densely connect artificial neurons
to realize compositions of non-
linear functions

● The information is propagated from
the inputs to the outputs

● Directed Acyclic Graph (DAG)
● Tasks: Classification, Regression
● The input data are n dimensional,

usually the feature vectors

x1 x2 xn…..

Hidden
layer

Hidden
layer

Output
layer

First AI winter

● How to train a MLP?
● Rosenblatt’s algorithm not

applicable, as it expects to know the
desired target.

● For hidden layers we cannot know
the desired target

y
i
={0,1}

d
i
=?

x1 x2 xn…..

Hidden
layer

Hidden
layer

Output
layer

1986 – Backpropagation

● Backpropagation revitalize the field
● Learning MLP for complicated functions can be solved
● Efficient algorithm which processes “large” training sets
● Allowed for complicated neural network architectures
● Today backpropagation is still at the core of neural network

training

Werbos (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis,
Harvard University.
Rumelhart, Hintont, Williams (1986). Learning representations by back-propagating errors. Nature

Backpropagation
Learning is the process of modifying the weights of each layer θ

l
 in

order to produce a network that performs some function:

x1 x2 xn…..

Hidden
layer

Hidden
layer

Output
layer

θ
l
= ?

Backpropagation
● Preliminary steps:

● Collect/acquire a training set {X, Y}
● Define model and initialize randomly weights.

● Given the training set find the weights:

Backpropagation

1) Forward propagation: sum inputs, produce activations, feed-forward
2) Error estimation.
3) Back propagate the error signal and used it to update weights

1

2

3

Hypotesis
aL = h (xi ; θ)

True label
vector yi

Backpropagation

Randomly initialize the initial weights

While error is too large
(1) For each training sample (presented in random order)

Apply the inputs to the network
Calculate the output for every neuron from the input layer, through the
 hidden layers, to the output layer

(2) Calculate the error at the outputs
(3) Use the output error to compute error signals for previous layers

Use the error signals to compute weight adjustments
Apply the weight adjustments

Periodically evaluate the network performance

Backpropagation
● Optimization with gradient descent:

● The most important component is how to compute the
gradient

● The backward computations of network return the
gradient

Backpropagation

Forward

Backward

Recursive rule: Previous layer

Current layer

1990s - CNN and LSTM

● Important advances in the field:
● Backpropagation
● Recurrent Long-Short Term Memory Networks (Schmidhuber, 1997)
● Convolutional Neural Networks: OCR solved before 2000s (LeNet, 1998).

Second AI winter

● NN cannot exploit many layers
● Overfitting
● Vanishing gradient (with NN training

you need to multiply several small
numbers they become smaller →
and smaller)

● Lack of processing power (no GPUs)
● Lack of data (no large annotated

datasets)◦

Second AI winter

● Kernel Machines (e.g. SVMs) suddenly become very popular
● Similar accuracies than NN in the same tasks
● Much fewer heuristics and parameters
● Nice proofs on generalization

The believers

2006 - Learning deep belief nets
● Clever way of initializing network weights:

● Train each layer one by one with unsupervised training (using contrastive
divergence)

● Much better than random values
● Fine-tune weigths with a round of supervised learning just as is normal for

neural nets
● State of the art performance on MNIST dataset

[Hinton et al.]

2012 - AlexNet

● Hinton’ s group implemented a CNN similar to LeNet
[LeCun1998] but...
● Trained on Imagenet with two GPUs
● With some technical improvements (ReLU, dropout, data

augmentation)

 Traditional ML
vs

Deep models
vs

Human

Why so powerful?
● Build an improved feature space

● First layer learns first order features (e.g. edges…)
● Subsequent layers learns higher order features (combinations of first

layer features, combinations of edges, etc.)
● Final layer of transformed features are fed into supervised layer(s)

Learning hierarchical representations
● Traditional framework

● Deep Learning

Simple
Classifier
Pear

Handcrafted
Features

Classification
Model

Simple
Classifier
Pear

Layer1
θ

1

Layer2
θ

2

Layer3
θ

3

Why Deep Learning now?

● Three main factors:
● Better hardware
● Big data
● Technical advances:

● Layer-wise pretraining
● Optimization (e.g. Adam, batch normalization)
● Regularization (e.g. dropout)

….

GPUs

NVIDIA Blog

Big Data

● Large fully annotated datasets

Advances with Deep Learning

47

● Better:

● Activation functions (RELU)
● Training schemes
● Weights initialization
● Address overfitting (dropout)
● Normalization between layers
● Residual deep learning
● ….

Sigmoid activations

48

● Positive facts:
● Output can be interpreted as probability
● Output bounded in [0,1]

● Negative facts
● Always multiply with <1, gradients can be small
● The gradients at the tails is flat to 0, almost no weights

updates

Rectified Linear Units

49

● More efficient gradient propagation:
 (derivative is 0 or constant)

● More efficient computation:
 (only comparison, addition and multiplication).

● Sparse activation: e.g. in a randomly initialized networks, only
about 50% of hidden units are activated (having a non-zero output)

● Lots of variations have been proposed recently.

Losses

● Sum-squared error (L2) loss gradient seeks the maximum
likelihood hypothesis under the assumption that the
training data can be modeled by Normally distributed
noise added to the target function value.

● Fine for regression but less natural for classification.
● For classification problems it is advantageous and

increasingly popular to use the softmax activation
function, just at the output layer, with the cross-entropy
loss function.

Softmax and Cross Entropy

51

● Softmax: softens 1 of k targets to mimic a probability
vector for each output.

Softmax and Cross Entropy

52

● Cross entropy loss: most popular classification losses
for classifiers that output probabilities:

● Generalization of logistic regression for more than
two outputs.

● These new loss and activation functions helps avoid
gradient saturation.

Stochastic Gradient Descent (SGD)

53

● Use mini-batch sampled in the dataset for gradient estimate.

● Sometimes helps to escape from local minima
● Noisy gradients act as regularization
● Also suitable for datasets that change over time
● Variance of gradients increases when batch size decreases
● Not clear how many sample per batch

Learning rate

54

● Great impact on learning performance

Momentum

55

● Gradient updates with momentum

● Prevent gradient switching all the time
● Faster and more robust convergence

Adaptive Learning

56

● Popular schemes
● Nesterov Momentum – Calculate point you would go to if using normal

momentum. Then, compute gradient at that point. Do normal update
using that gradient and momentum.

● Rprop – Resilient BP, if gradient sign inverts, decrease its individual learning
rates, else increase it.

● Adagrad – Scale learning rates inversely proportional to sqrt(sum(historical
values)), such that learning rates with smaller derivatives are decreased less

● RMSprop – Adagrad but uses exponentially weighted moving average,
older updates basically forgotten

● Adam (Adaptive moments): Momentum terms on both gradient and
squared gradient (1st and 2nd moments) – update based on both

Data augmentation

57

● Simple preprocessing makes the difference (e.g. image flipping,
scaling)

Data augmentation

58

● Simple preprocessing makes the difference (e.g. image flipping,
scaling)

Weights initialization

59

● Initialization depends on chosen non-linearities and data
normalization

● Initial weights are important to find a good balance among
layers and which learns well across all layers.

● Common is to select initial weights from a uniform distribution
between:

[-c/root(node fan-in), c/root(node fan-in)] (c = 1 Xavier, c = 2 He)

● Can do Gaussian distribution with above as variances

● Lots of other variations and current work

Regularization - Dropout

60

● For each instance drop a node (hidden or input) and its connections
with probability p and train

● Final net just has all averaged weights (actually scaled by 1-p)
● As if ensembling 2n different network substructures

Batch Normalization

61

● To maintain learning balance renormalize activations at each
layer

● Obtain zero-mean and unit variance inputs: re-normalize the
activation/net values at each input dimension k at each layer

● Want mean and variance of that activation for the entire data
set. Approximate the empirical mean and variance over a mini-
batch of instances and then normalize the activation.

[Ioffe and Szegedy, 2015]

Batch Normalization

62

● Then scale and shift the normalized activation with two learnable weights
per input, γ and ,β to attain the final batch normalization for that
activation:

● BN advantages:

– Allows larger learning rates

– Improves gradient flow

– Reduces dependence on initialization

[Ioffe and Szegedy, 2015]

Deep Residual Learning

63

● Residual Nets
● 2015 ILSVRC winner
● A CNN with hundreds of layers
● Uses Batch Normalization extensively
● Learns the residual mapping with respect to the identity
● Simple concept which tends to make the function to be learned

simpler across depth

Deep Residual Learning

64

● F is a residual mapping of the desired function H with respect
to identity

● If the optimal mapping close to identity, small fluctuations.

[He]

Deep Residual Learning

65

● Very simple design but deep

References
[Andrychowicz2016] Andrychowicz, Denil Gomez, Hoffman, Pfau, Schaul, de Freitas, Learning to learn
by gradient descent by gradient descent, arXiv, 2016

[He2015] He, Zhang, Ren, Sun. Delving Deep into Rectifiers: Surpassing Human Level Performance on
ImageNet Classification, ICCV, 2015

[Ioffe2015] Ioffe, Szegedy, Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, arXiv, 2015

[Kingma2014] Kingma, Ba. Adam: A Method for Stochastic Optimization, arXiv, 2014

[Srivastava2014] Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov, Dropout: A Simple Way to
Prevent Neural Networks from Overfitting, JMLR, 2014

[Sutskever2013] Sutskever, Martens, Dahl, Hinton. On the importance of initialization and momentum
 in deep learning, JMLR, 2013

[Bengio2012] Bengio, Practical recommendations for gradient-based training of deep architectures,
ArXiv, 2012

[Krizhevsky2012] Krizhevsky, Hinton. ImageNet Classification with Deep Convolutional Neural Networks,
NIPS, 2012

[Duchi2011] Duchi, Hazan, Singer. Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization, JMLR, 2011

[Glorot2010] Glorot, Bengio. Understanding the difficulty of training deep feedforward neural networks, JJMLR, 2010

Deep Learning
Models

Deep Learning Models
Deep Belief Networks and Autoencoders:

unsupervised learning, employs layer-wise training to initialize
each layer and capture multiple levels of representation
simultaneously.

Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527-1554.

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training of Deep
Networks, Advances in Neural Information Processing Systems 19

 Encoder Decoder

Autoencoders

• The auto encoder idea is motivated by the concept of a good
representation.

• For example, for a classifier, a good representation can be defined
as one that will yield a better performing classifier.

• An encoder is a deterministic mapping f that transforms an
input vector x into hidden representation y

• Parameters in f: weight matrix W and bias b (an offset vector)

● A decoder maps back the hidden representation y to the
reconstructed input z via g.

● Auto encoding: compare the reconstructed input z to the
original input x and try to minimize the reconstruction error.

Denoising Autoencoders

• Vincent et al. (2010), “a good representation is one that
can be obtained robustly from a corrupted input and
that will be useful for recovering the corresponding clean
input.”

• The higher level representations are relatively stable and
robust to input corruption.

• In denoising auto encoders, the partially corrupted
output is cleaned (de-noised).

Denoising Autoencoders
1. Clean input is partially corrupted through a stochastic

mapping.

2. The corrupted input passes through a basic auto encoder and is
mapped to a hidden representation.

3. From this hidden representation, we can reconstruct z.

4. Minimize the reconstruction error (cross-entropy or squared
error loss.

Stacked Denoising Autoencoders
• Deep architecture: auto encoders stack one on top of another.
• Once the encoding function of the first DAE is learned and

used to reconstruct the corrupted input, we can train the
second level.

• Once the SDAE is trained, its output can be used as the input
to a supervised learning algorithm such as support vector
machine classifier or a multi-class logistic regression.

Structured Data
● Some applications naturally deal with an input space which

is locally structured – spatial or temporal
● Images, language, etc. vs arbitrary input features
● Deep Learning extremely powerful in this case.

Deep Learning Models
Convolutional Neural Networks:

organizes neurons based on animal’s visual cortex system, which
allows for learning patterns at both local level and global level.

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document
Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998

Convolutional Neural Networks

● CNN: a multi-layer neural network:
– With Local connectivity:

● Neurons in a layer are only connected to a small region of the
layer before it

– Sharing weight parameters across spatial positions:
● Learning shift-invariant filter kernels
● Reducing the number of parameters

CNN Architecture

Convolutional Neural Networks

Input
Image

Input
Image

Convolution
(Learned)

Convolution
(Learned)

Non-
linearity

Non-
linearity

Spatial
pooling

Spatial
pooling

NormalizeNormalize Feature
maps

Feature
maps

Input Feature Activation Map

Convolutional Neural Networks

Input
Image

Input
Image

Convolution
(Learned)

Convolution
(Learned)

Non-
linearity

Non-
linearity

Spatial
pooling

Spatial
pooling

NormalizeNormalize Feature
maps

Feature
maps

Each image sub-region yields a feature
map, representing its feature.

Shared weights

Convolutional Neural Networks

Convolutional filters are learned in a supervised
manner by back-propagating classification error

Input
Image

Input
Image

Convolution
(Learned)

Convolution
(Learned)

Non-
linearity

Non-
linearity

Spatial
pooling

Spatial
pooling

NormalizeNormalize Feature
maps

Feature
maps

Convolutional Neural Networks

Non-linearity:
e.g. Rectified Linear Unit (ReLU)

Input
Image

Input
Image

Convolution
(Learned)

Convolution
(Learned)

Non-
linearity

Non-
linearity

Spatial
pooling

Spatial
pooling

NormalizeNormalize Feature
maps

Feature
maps

Convolutional Neural Networks

Max pooling

A non-linear down-sampling, to provide translation invariance

Input
Image

Input
Image

Convolution
(Learned)

Convolution
(Learned)

Non-
linearity

Non-
linearity

Spatial
pooling

Spatial
pooling

NormalizeNormalize Feature
maps

Feature
maps

Convolutional Neural Networks

Input
Image

Input
Image

Convolution
(Learned)

Convolution
(Learned)

Non-
linearity

Non-
linearity

Spatial
pooling

Spatial
pooling

NormalizeNormalize Feature
maps

Feature
maps

Convolutional Neural Networks

Max
pooling

Input
Image

Input
Image

Convolution
(Learned)

Convolution
(Learned)

Non-
linearity

Non-
linearity

Spatial
pooling

Spatial
pooling

NormalizeNormalize Feature
maps

Feature
maps

Convolutional Neural Networks

Input
Image

Input
Image

Convolution
(Learned)

Convolution
(Learned)

Non-
linearity

Non-
linearity

Spatial
pooling

Spatial
pooling

NormalizeNormalize Feature
maps

Feature
maps

• By progressively reducing the spatial size of the representation we
reduce the amount of parameters and computation in the network,
and also control overfitting.

Convolutional Neural Networks

Input
Image

Input
Image

Convolution
(Learned)

Convolution
(Learned)

Non-
linearity

Non-
linearity

Spatial
pooling

Spatial
pooling

NormalizeNormalize Feature
maps

Feature
maps

Deep Learning Models
Recurrent Neural Networks:

connections between units form a directed cycle. This creates an
internal state of the network which allows it to exhibit dynamic
temporal behavior.

Hochreiter, S, Schmidhuber (1997) Long Short-Term Memory, Neural Computation, 9(8):1735–1780,
1997

RNNs for sequences

Standard Neural Networks (and also CNN):

● Only accepted a fixed-size vector/matrix as input (e.g., an image)
and produce a fixed-size vector as output (e.g., probabilities of
different classes).

● These models use a fixed amount of computational steps (e.g. the
number of layers in the model).

Recurrent Neural Networks are unique as they allow us to operate over
sequences of vectors.

Sequences in the input, the output, or in the most general case both.

Recurrent Neural Networks

● An unrolled RNN (in time) can be considered as a deep neural
network with indefinitely many layers:

Recurrent Neural Networks

Xt : input at time

St : hidden state at time (memory of the network).

f: is an activation function (e.g, sigmoid, ReLU).

U, V, W: network parameters (unlike a feedforward neural network, an RNN
shares the same parameters across all time steps).

g: activation function for the output layer (typically a softmax function).

y: the output of the network at time

Back Propagation Through Time

● The backpropagation algorithm can be extended to BPTT by
unfolding RNN in time and stacking identical copies of the
RNN.

● As the parameters that are supposed to be learned (U, V and
W) are shared by all time steps in the network, the gradient
at each output depends, not only on the calculations of the
current time step, but also the previous time steps.

● A common choice for the loss function is the cross-entropy
loss.

Vanishing gradient

● Definition: The influence of a given input on the hidden layer,
and therefore on the network output, either decays or grows
exponentially as it propagates through an RNN.

● In practice, the range of contextual information that standard
RNNs can access are limited to approximately 10 time steps
between the relevant input and target events.

Solution: LSTM networks.

Long Short Term Memory (LSTM)

● An LSTM is a special kind of RNN
architecture, capable of learning
long-term dependencies.

● An LSTM can learn to bridge time
intervals in excess of 1000 steps.

● This is achieved by multiplicative
gate units that learn to open and
close access to the constant error
flow.

Long Short Term Memory (LSTM)

● LSTM networks introduce a new
structure called a memory cell.

● Each memory cell contains four
main elements:
– Input gate

– Forget gate

– Output gate

– Neuron with a self-recurrent

● These gates allow the cells to keep
and access information over long
periods of time.

LSTM Memory Cell

Long Short Term Memory (LSTM)

• i : input gate, how much of the new information will be
let through the memory cell.

• f : forget gate, responsible for information should be
thrown away from memory cell.

• o : output gate, how much of the information will be
passed to expose to the next time step.

• g : self-recurrent which is equal to standard RNN

• ct: internal memory of the memory cell

• st : hidden state

• y : final output

Long Short Term Memory (LSTM)
• i : input gate, how much of the new information will be let through the memory cell.

• f : forget gate, responsible for information should be thrown away from memory cell.

• o : output gate, how much of the information will be passed to expose to the next time step.

• g : self-recurrent which is equal to standard RNN

• ct: internal memory of the memory cell

• st : hidden state

• y : final output
•

Long Short Term Memory (LSTM)

The future of
Deep Learning

New models

Deep Generative Models

109

● Lots of research on generative models to create probabilistic models
of training data with ability to generate new images, sentences, etc.

Deep Generative Models

110

Generative Adversarial Networks (GANs)
● Generator net produces samples x close to training samples
● Discriminator net (adversary) must differentiate between samples from
the generative net and the training set
● Use error feedback to improve task of both nets, until discriminator can
no longer distinguish, then can discard discriminator net – increasingly
difficult for humans to distinguish

Open Issues

Why it works?

Open Issues

Scale: larger and larger nets...

Open Issues

Scale: how to stop this???

Deep Learning & Data

https://www.linkedin.com/pulse/how-artificial-intelligence-revolutionizing-finance-del-toro-barba

Open Issues

Unsupervised Learning

Open Issues

Life-long Learning

[Eaton]

Summary

117

● Impressive results
● Works well in structured/Markovian spaces - CNNs, etc.
● Much recent excitement, still much to be discovered
● More work needed to understand how and why deep

learning works so well – How deep should we go?
● Potential for significant improvements

