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The AI Revolution



  

Computer Vision



  

Computer Vision
● Amazing progresses in the last few years with Convolutional 

Neural Networks (CNNs).

1.4M images, 1K categories

(2009)



  

Computer Vision
● Amazing progresses in the last few years with Convolutional 

Neural Networks (CNNs).

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

  Traditional ML
vs

Deep models
vs

Human



  

Speech Processing
● Machine translation.

Rick Rashid in Tianjin, China, October, 25, 2012

A voice recognition program translated a speech given by 

Richard F. Rashid, Microsoft’s top scientist, into Mandarin Chinese. 

https://www.youtube.com/watch?v=Nu-nlQqFCKg


  

Speech Processing

● Text To Speech WaveNet.

https://www.youtube.com/watch?v=CqFIVCD1WWo


  

Creativity

● Style Transfer. 

[Ruder et al.]

https://www.youtube.com/watch?v=Khuj4ASldmU&t=13s


  

Creativity

● Generate Donald Trump’s Twitter eruptions. 

https://twitter.com/deepdrumpf


  

Machine Learning vs Deep Learning

                   2002                2012



  

Deep Learning

● What is deep learning? 

● Why is it generally better than traditional ML methods on 
image, speech and certain other types of data? 



  

Deep Learning

● What is deep learning? 

Deep Learning means using a neural network with several layers of 
nodes between input and output 

input
output

hidden hidden hidden



  

More formally
● A family of parametric models which learn non-

linear hierarchical representations:

parameters 
of layer L

non-linear
activation

parameters 
of the network

input



  

… and informally



  

Deep Learning
● Why is it generally better than other ML methods on 

image, speech and certain other types of data?  

The series of layers between 
input and output compute 
relevant features 
automatically 
in a series of stages, just as our 
brains seem to.



  

Deep Learning

...but neural networks have been around for 25 years...
So, what is new?  



  

Biological neuron

• A neuron has
– Branching input (dendrites)
– Branching output (the axon)

• Information moves from the dendrites to the axon via the cell body

• Axon connects to dendrites via synapses
– Synapses vary in strength
– Synapses may be excitatory or inhibitory 

Axon

Dendrites

Cell body or Soma

Nucleus

Synapses



  

Perceptron
An Artificial Neuron (Perceptron) is a non-linear 
parameterized function with restricted output range
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Biological neuron and Perceptron
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Brief History of Neural Networks

[VUNO]



  

1943 – McCulloch & Pitts Model

● Early model of artificial neuron
● Generates a binary output
● The weights values are fixed
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1958 – Perceptron by Rosemblatt

● Perceptron as a machine for linear classification
● Main idea: Learn the weigths and consider bias.

● One weight per input
● Multiply weights with respective inputs and add bias 
● If result larger than threshold return 1, otherwise 0
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Activation functions



  

First AI winter

● The exclusive or (XOR) cannot be 
solved by perceptrons

● Neural models cannot be applied 
to complex tasks



  

First AI winter

● But, can XOR be solved by neural 
networks?
● Multi-layer perceptrons (MLP) 

can solve XOR
● Few years later Minsky built such 

MLP

x1 x2 xn…..

Hidden 
layer

Hidden 
layer

Output 
layer



  

Multi-layer feed forward Neural Network
● Main idea: 

● Densely connect artificial neurons 
to realize compositions of non-
linear functions

● The information is propagated from 
the inputs to the outputs

● Directed Acyclic Graph (DAG)
● Tasks: Classification, Regression
● The input data are n dimensional, 

usually the feature vectors 

x1 x2 xn…..

Hidden 
layer

Hidden 
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Output 
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First AI winter

● How to train a MLP?
● Rosenblatt’s algorithm not 

applicable, as it expects to know the 
desired target.

● For hidden layers we cannot know 
the desired target

y
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1986 – Backpropagation

● Backpropagation revitalize the field
● Learning MLP for complicated functions can be solved
● Efficient algorithm which processes “large” training sets
● Allowed for complicated neural network architectures
● Today backpropagation is still at the core of neural network 

training

Werbos (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, 
Harvard University. 
Rumelhart, Hintont, Williams (1986). Learning representations by back-propagating errors. Nature  



  

Backpropagation
Learning is the process of modifying the weights of each layer θ

l
 in 

order to produce a network that performs some function:

x1 x2 xn…..

Hidden 
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Output 
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= ?



  

Backpropagation
● Preliminary steps:

● Collect/acquire a training set {X, Y}
● Define model and initialize randomly weights.

● Given the training set find the weights:



  

Backpropagation

1) Forward propagation: sum inputs, produce activations, feed-forward
2) Error estimation.
3) Back propagate the error signal and used it to update weights

1

2

3

Hypotesis
aL  = h (xi ; θ)  

True label
vector yi  



  

Backpropagation

Randomly initialize the initial weights

While error is too large
(1) For each training sample (presented in random order)

Apply the inputs to the network
Calculate the output for every neuron from the input layer, through the 
  hidden layers, to the output layer

(2) Calculate the error at the outputs
(3) Use the output error to compute error signals for previous layers

Use the error signals to compute weight adjustments
Apply the weight adjustments

Periodically evaluate the network performance 



  

Backpropagation
● Optimization with gradient descent:

● The most important component is how to compute the 
gradient

● The backward computations of network return the 
gradient



  

Backpropagation

Forward

Backward

Recursive rule:    Previous layer

Current layer



  

1990s - CNN and LSTM

● Important advances in the field:
● Backpropagation
● Recurrent Long-Short Term Memory Networks (Schmidhuber, 1997)
● Convolutional Neural Networks: OCR solved before 2000s (LeNet, 1998).



  

Second AI winter

● NN cannot exploit many layers
● Overfitting
● Vanishing gradient (with NN training 

you need to multiply several small 
numbers  they become smaller →
and smaller)

● Lack of processing power (no GPUs)
● Lack of data (no large annotated 

datasets)◦



  

Second AI winter

● Kernel Machines (e.g. SVMs) suddenly become very popular
● Similar accuracies than NN in the same tasks
● Much fewer heuristics and parameters
● Nice proofs on generalization 



  

The believers



  

2006 -  Learning deep belief nets 
● Clever way of initializing network weights:

● Train each layer one by one with unsupervised training (using contrastive 
divergence)

● Much better than random values
● Fine-tune weigths with a round of supervised learning just as is normal for 

neural nets
● State of the art performance on MNIST dataset

[Hinton et al.]



  

2012 - AlexNet

● Hinton’ s group implemented a CNN similar to LeNet 
[LeCun1998] but...
● Trained on Imagenet with two GPUs 
● With some technical improvements (ReLU, dropout, data 

augmentation)

  Traditional ML
vs

Deep models
vs

Human



  

Why so powerful?
● Build an improved feature space

● First layer learns first order features (e.g. edges…)
● Subsequent layers learns higher order features (combinations of first 

layer features, combinations of edges, etc.)
● Final layer of transformed features are fed into supervised layer(s)



  

Learning hierarchical representations
● Traditional framework

● Deep Learning

Simple 
Classifier
Pear

Handcrafted 
Features

Classification 
Model

Simple 
Classifier
Pear

Layer1
θ
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2
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Why Deep Learning now?

● Three main factors:
● Better hardware
● Big data
● Technical advances: 

● Layer-wise pretraining
● Optimization (e.g. Adam, batch normalization)
● Regularization (e.g. dropout)

….



  

GPUs

NVIDIA Blog



  

Big Data

● Large fully annotated datasets



  

Advances with Deep Learning

47

● Better: 

● Activation functions (RELU)
● Training schemes
● Weights initialization
● Address overfitting (dropout)
● Normalization between layers
● Residual deep learning
● ….



  

Sigmoid activations

48

● Positive facts: 
● Output can be interpreted as probability
● Output bounded in [0,1]

● Negative facts
● Always multiply with <1, gradients can be small
● The gradients at the tails is flat to 0, almost no weights

updates



  

Rectified Linear Units

49

              

● More efficient gradient propagation:
 (derivative is 0 or constant)

● More efficient computation: 
 (only comparison, addition and multiplication).

● Sparse activation: e.g. in a randomly initialized networks, only 
about 50% of hidden units are activated (having a non-zero output)

● Lots of variations have been proposed recently.



  

Losses

● Sum-squared error (L2) loss gradient seeks the maximum 
likelihood hypothesis under the assumption that the 
training data can be modeled by Normally distributed 
noise added to the target function value.

● Fine for regression but less natural for classification.
● For classification problems it is advantageous and 

increasingly popular to use the softmax activation 
function, just at the output layer, with the cross-entropy 
loss function.



  

Softmax and Cross Entropy

51

● Softmax: softens 1 of k targets to mimic a probability 
vector for each output.



  

Softmax and Cross Entropy

52

● Cross entropy loss: most popular classification losses 
for classifiers that output probabilities:

● Generalization of logistic regression for more than 
two outputs.

● These new loss and activation functions  helps avoid 
gradient saturation.



  

Stochastic Gradient Descent (SGD)

53

● Use mini-batch sampled in the dataset for gradient estimate.

● Sometimes helps to escape from local minima
● Noisy gradients act as regularization
● Also suitable for datasets that change over time
● Variance of gradients increases when batch size decreases
● Not clear how many sample per batch



  

Learning rate

54

● Great impact on learning performance



  

Momentum

55

● Gradient updates with momentum

● Prevent gradient switching all the time
● Faster and more robust convergence



  

Adaptive Learning

56

● Popular schemes
● Nesterov Momentum – Calculate point you would go to if using normal 

momentum.  Then, compute gradient at that point. Do normal update 
using that gradient and momentum.

● Rprop – Resilient BP, if gradient sign inverts, decrease its individual learning 
rates, else increase it.

● Adagrad – Scale learning rates inversely proportional to sqrt(sum(historical 
values)), such that learning rates with smaller derivatives are decreased less

● RMSprop – Adagrad but uses exponentially weighted moving average, 
older updates basically forgotten

● Adam (Adaptive moments): Momentum terms on both gradient and 
squared gradient (1st and 2nd moments) – update based on both



  

Data augmentation

57

● Simple preprocessing makes the difference (e.g. image flipping, 
scaling)



  

Data augmentation

58

● Simple preprocessing makes the difference (e.g. image flipping, 
scaling)



  

Weights initialization

59

● Initialization depends on chosen non-linearities and data 
normalization

● Initial weights are important to find a good balance among 
layers and which learns well across all layers.  

● Common is to select initial weights from a uniform distribution 
between:

[-c/root(node fan-in), c/root(node fan-in)] (c = 1 Xavier, c = 2 He)

● Can do Gaussian distribution with above as variances

● Lots of other variations and current work



  

Regularization - Dropout

60

● For each instance drop a node (hidden or input) and its connections 
with probability p and train

● Final net just has all averaged weights (actually scaled by 1-p)
● As if ensembling 2n different network substructures



  

Batch Normalization

61

● To maintain learning balance renormalize activations at each 
layer

● Obtain zero-mean and unit variance inputs: re-normalize the 
activation/net values at each input dimension k at each layer

● Want mean and variance of that activation for the entire data 
set. Approximate the empirical mean and variance over a mini-
batch of instances and then normalize the activation.

[Ioffe and Szegedy, 2015]



  

Batch Normalization

62

● Then scale and shift the normalized activation with two learnable weights 
per input, γ and ,β  to attain the final batch normalization for that 
activation:

● BN advantages: 

– Allows larger learning rates

– Improves gradient flow

– Reduces dependence on initialization

[Ioffe and Szegedy, 2015]



  

Deep Residual Learning

63

● Residual Nets  
● 2015 ILSVRC winner
● A CNN with hundreds of layers
● Uses Batch Normalization extensively
● Learns the residual mapping with respect to the identity
● Simple concept which tends to make the function to be learned 

simpler across depth



  

Deep Residual Learning

64

● F is a residual mapping of the desired function H  with respect 
to identity

● If the optimal mapping close to identity, small fluctuations.

[He]



  

Deep Residual Learning

65

● Very simple design but deep  
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Deep Learning Models
Deep Belief Networks and Autoencoders:

unsupervised learning, employs layer-wise training to initialize 
each layer and capture multiple levels of representation 
simultaneously.

Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. 
Neural Computation, 18:1527-1554. 

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training of Deep 
Networks, Advances in Neural Information Processing Systems 19 

  Encoder                  Decoder      



  

Autoencoders

• The auto encoder idea is motivated by the concept of a good 
representation.

• For example, for a classifier, a good representation can be defined 
as one that will yield a better performing classifier.

• An encoder is a deterministic mapping f that transforms an 
input vector x  into hidden representation y

• Parameters in f:  weight matrix W and bias b (an offset vector)

● A decoder maps back the hidden representation y to the 
reconstructed input  z via g.

● Auto encoding: compare the reconstructed input z to the 
original input x and try to minimize the reconstruction error.



  

Denoising Autoencoders

• Vincent et al. (2010), “a good representation is one that 
can be obtained robustly from a corrupted input and 
that will be useful for recovering the corresponding clean 
input.”

• The higher level representations are relatively stable and 
robust to input corruption.

• In denoising auto encoders, the partially corrupted 
output is cleaned (de-noised).



  

Denoising Autoencoders
1. Clean input is partially corrupted through a stochastic 

mapping.

2. The corrupted input passes through a basic auto encoder and is 
mapped to a hidden representation.

3. From this hidden representation, we can reconstruct z.

4. Minimize the reconstruction error (cross-entropy or squared 
error loss.



  

Stacked Denoising Autoencoders
• Deep architecture: auto encoders stack one on top of another.
• Once the encoding function of the first DAE is learned and 

used to reconstruct the corrupted input, we can train the 
second level.

• Once the SDAE is trained, its output can be used as the input 
to a supervised learning algorithm such as support vector 
machine classifier or a multi-class logistic regression.



  

Structured Data
● Some applications naturally deal with an input space which 

is locally structured – spatial or temporal
● Images, language, etc. vs arbitrary input features
● Deep Learning extremely powerful in this case.



  

Deep Learning Models
Convolutional Neural Networks: 

organizes neurons based on animal’s visual cortex system, which 
allows for learning patterns at both local level and global level.

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document 
Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998



  

Convolutional Neural Networks

● CNN: a multi-layer neural network:
– With Local connectivity:

● Neurons in a layer are only connected to a small region of the 
layer before it 

– Sharing weight parameters across spatial positions:
● Learning shift-invariant filter kernels
● Reducing the number of parameters



  

CNN Architecture



  

Convolutional Neural Networks
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Convolutional Neural Networks
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Each image sub-region yields a feature 
map, representing its feature.
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Convolutional Neural Networks

Convolutional filters are learned in a supervised 
manner by back-propagating classification error
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Convolutional Neural Networks

Non-linearity: 
e.g. Rectified Linear Unit (ReLU)

Input 
Image

Input 
Image

Convolution 
(Learned)

Convolution 
(Learned)

Non-
linearity

Non-
linearity

Spatial 
pooling

Spatial 
pooling

NormalizeNormalize Feature 
maps

Feature 
maps



  

Convolutional Neural Networks

Max pooling

A non-linear down-sampling, to provide translation invariance
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Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Neural Networks
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• By progressively reducing the spatial size of the representation we 
reduce the amount of parameters and computation in the network, 
and also control overfitting.



  

Convolutional Neural Networks
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Deep Learning Models
Recurrent Neural Networks: 

connections between units form a directed cycle. This creates an 
internal state of the network which allows it to exhibit dynamic 
temporal behavior.

Hochreiter, S, Schmidhuber (1997) Long Short-Term Memory, Neural Computation, 9(8):1735–1780, 
1997



  

RNNs for sequences

Standard Neural Networks (and also CNN):

● Only accepted a fixed-size vector/matrix as input (e.g., an image) 
and produce a fixed-size vector as output (e.g., probabilities of 
different classes). 

● These models use a fixed amount of computational steps (e.g. the 
number of layers in the model).

Recurrent Neural Networks are unique as they allow us to operate over 
sequences of vectors.

Sequences in the input, the output, or in the most general case both.



  

Recurrent Neural Networks

● An unrolled RNN (in time) can be considered as a deep neural 
network with indefinitely many layers:



  

Recurrent Neural Networks

Xt : input at time 

St : hidden state at time  (memory of the network).

f: is an activation function (e.g,  sigmoid, ReLU). 

U, V, W: network parameters (unlike a feedforward neural network, an RNN 
shares the same parameters across all time steps).

g: activation function for the output layer (typically a softmax function).

y: the output of the network at time

 
 



  

Back Propagation Through Time

● The backpropagation algorithm can be extended to BPTT by 
unfolding RNN in time and stacking identical copies of the 
RNN. 

● As the parameters that are supposed to be learned (U, V and 
W) are shared by all time steps in the network, the gradient 
at each output depends, not only on the calculations of the 
current time step, but also the previous time steps.

● A common choice for the loss function is the cross-entropy 
loss.



  

Vanishing gradient

● Definition: The influence of a given input on the hidden layer, 
and therefore on the network output, either decays or grows 
exponentially as it propagates through an RNN.

● In practice, the range of contextual information that standard 
RNNs can access are limited to approximately 10 time steps 
between the relevant input and target events. 

Solution: LSTM networks.



  

Long Short Term Memory (LSTM)

● An LSTM is a special kind of RNN 
architecture, capable of learning 
long-term dependencies.

● An LSTM can learn to bridge time 
intervals in excess of 1000 steps.

● This is achieved by multiplicative 
gate units that learn to open and 
close access to the constant error 
flow. 



  

Long Short Term Memory (LSTM)

● LSTM networks introduce a new 
structure called a memory cell.

● Each memory cell contains four 
main elements: 
– Input gate

– Forget gate

– Output gate

– Neuron with a self-recurrent

● These gates allow the cells to keep 
and access information over long 
periods of time. 

LSTM Memory Cell



  

Long Short Term Memory (LSTM)

• i : input gate, how much of the new information will be 
let through the memory cell. 

• f : forget gate, responsible for information should be 
thrown away from memory cell. 

• o : output gate, how much of the information will be 
passed to expose to the next time step.

• g : self-recurrent which is equal to standard RNN

• ct: internal memory of the memory cell

• st : hidden state 

• y : final output



  

Long Short Term Memory (LSTM)
• i : input gate, how much of the new information will be let through the memory cell. 

• f : forget gate, responsible for information should be thrown away from memory cell. 

• o : output gate, how much of the information will be passed to expose to the next time step.

• g : self-recurrent which is equal to standard RNN

• ct: internal memory of the memory cell

• st : hidden state 

• y : final output
•  



  

Long Short Term Memory (LSTM)



  

The future of 
Deep Learning



  

New models



  

Deep Generative Models

109

● Lots of research on generative models to create probabilistic models 
of training data with ability to generate new images, sentences, etc.



  

Deep Generative Models

110

Generative Adversarial Networks (GANs)
● Generator net produces samples x close to training samples
● Discriminator net (adversary) must differentiate between samples from 
the generative net and the training set
● Use error feedback to improve task of both nets, until discriminator can 
no longer distinguish, then can discard discriminator net – increasingly 
difficult for humans to distinguish



  

Open Issues

Why it works?



  

Open Issues

Scale: larger and larger nets...



  

Open Issues

Scale: how to stop this???



  

Deep Learning & Data

https://www.linkedin.com/pulse/how-artificial-intelligence-revolutionizing-finance-del-toro-barba



  

Open Issues

Unsupervised Learning



  

Open Issues

Life-long Learning

[Eaton]



  

Summary

117

● Impressive results
● Works well in structured/Markovian spaces - CNNs, etc.
● Much recent excitement, still much to be discovered
● More work needed to understand how and why deep 

learning works so well – How deep should we go?
● Potential for significant improvements


