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The Al Revolution

FORTUNE SUBSCRIBE

llustration by Justin Metz
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WHY DEEP LEARNING IS

SUDDENLY CHANGING YOUR LIFE

Decades-old discoveries are now -
and will soon transfol

Over the past four years, readers have doubt

a wide range of everyday technologies.

Most obviously, the speech-recognition fiunc

A

A survival guide for the coming Al
revolution
By Natalie Rens, Juxi Leitner Mar 03, 2017

This article first appeared on The Conversation.

If the popular media isto be believed, artificial intelligence is coming to steal your
Jjob and threaten life as we know it. If we do not prepare now, we may face a future where

Al runs free and dominates humans in society.

The AI revolution is Indeed underway. To ensure you are prepared to make It through the




Computer Vision
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recoanition — surely a computer can't do that as well as a human. - .= .-
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* Amazing progresses in the last few years with Convolutional
Neural Networks (CNNs).

Computer Vision

1.4M images, 1K categories
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* Amazing progresses in the last few years with Convolutional
Neural Networks (CNNs).

Computer Vision

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

ILSVRC top-5 error on ImageNet

Traditional ML
Vs
Deep models
Vs
Human

22.5

15

7.5

2010 201 2012 2013 2014 Human 2015




Speech Processing

Rick Rashid in Tianjin, China, October, 25, 2012

A voice recognition program translated a speech given by

Richard F. Rashid, Microsoft’s top scientist, into Mandarin Chinese.

| ~~ 4. | N LA .


https://www.youtube.com/watch?v=Nu-nlQqFCKg

Speech Processing

* Text To Speech WaveNet.

News & Blog About Us

WaveNet: A Generative Model for Raw Audio

nerative model of raw audio

This post presents WaveNet, a de
waveforms. We show that WaveNets are able to generate speech which mimics

any human voice and which sounds more natural than the best existing Text-to-

Speech systems,

jucing the gap with human performance by over 50%

menstrate that the same network can be used to synthesize other

audio signals such as music, and present some striking samples of

automatically generated piano pieces.

Talking Machines

Allowing people to converse with machines is a long-standir eam af human-
computer interaction. The ability of computers to understand natural speech
has been revolutionised In the last few years by the application of deep neural

networks (e.g , Google Voice Search) However,

erating speech with

computers — a process usually referred to as speech synthesis or text-to-

speech (TTS) — s still larg d on so-called concatenative TTS K wher

1)

very large database of short speech fragments are recort from a si

speaker and then recombined to form camplete utterances This makes it

difficult to modify the voice (for example switching to a different speaker, or

altering the emphasis or emotion of their speech) without recarding a whole

| ~~ 4. | N LA .



https://www.youtube.com/watch?v=CqFIVCD1WWo

T

Creativity

» Style Transfer.

Freiburger Minsterplatz

[Ruder et al.]

| ~~ 4. | N LA .


https://www.youtube.com/watch?v=Khuj4ASldmU&t=13s

Creativity

* Generate Donald Trumps Twitter eruptions.

We've updated our Privacy Policy, effective June 18th, 2017. You can learn more about what's changed on our Help Center. X
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- -
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E Replying to @DavidYankavich 9591 Twests
Media hurting and left bgh\nd, | say: it looked like a million people.lt's imploding #KulbhushanJadhav
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: J
3 Leasad |, [1% #
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people, ruin his whole everything. @GlennThrush @FPOTUS 54K Tweets

DeepDrumpf @DeepDrumpf - Feb 4 Rolf Harris
E% America has never been more harmed by the vote. | made a ot of money on 2,261 Tweets

| ~~ 4. | N LA .

e



https://twitter.com/deepdrumpf
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Machine Learning vs Deep Learning
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Deep Learning

* What is deep learning?

SN

* Why is it generally better than traditional ML methods on
image, speech and certain other types of data?
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Deep Learning

* What is deep learning?

Deep Learning means using a neural network with several layers of
nodes between input and output

hidden hidden hidden

Yy

input
output
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More formally

* A family of parametric models which learn non-
linear hierarchical representations:

aL (X5 @)) — hL(hL—l(“'(hl(X? 91):9L—1): GL)

am ! T

input parameters non-linear parameters
of the network activation of layer L




.. and informally
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* Why is it generally better than other ML methods on
image, speech and certain other types of data?

Deep Learning

The series of layers between

input and output compute

relevant features

automatically

in a series of stages, just as our

brains seem to.
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Deep Learning

..but neural networks have been around for 25 years...
So, what is new?

AR A
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Biological neuron

Dendrites Synapses

e Aneuron has Nucleus |
— Branching input (dendrites)
— Branching output (the axon) Axon "’

Cell body or Soma

AR A

 Information moves from the dendrites to the axon via the cell body

» Axon connects to dendrites via synapses
— Synapses vary in strength
— Synapses may be excitatory or inhibitory

| ~~ 4. | N LA .



—I_ﬂ
Perceptron

An Artificial Neuron (Perceptron) is a non-linear
parameterized function with restricted output range

X, 8&
inputs XZQ W, é?
J

activation
5 5 function

SN

> output
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Biological neuron and Perceptron

Dendrites Synapses

. X

Nucleus X,
’ inputs  x,

Axon ( X

S

activation
5 function

Cell body or Soma

Dendrite I |
Cell Body




Brief History of Neural Networks

Deep Neural Network

(Pretraining)
Multi-layered SVM
— Perceptron A 1
ADALINE (Backpropagation)
A A
A
Perceptron
<GoldenAge . Dark Age (“Al Winter”) -
Electronic Brain

1940 1950 1960 1970 1980 1990 2000

S. McCulloch - W, Pitts M. Minsky - S. Papert

XANDY XORY NOT X = s ®
o . E i :
‘-.‘.. : | (-1 | —— | S— e
AN oo ole i g g g
hox —— Backward Error ,. X - : L

« Adjustable Weights » Learnable Weights and Threshold * XOR Problem » Solution to nonlinearly separable problems  » Limitations of learning prior knowledge * Hierarchical feature Leaming
+ Weights are not Learned + Big computation, local optima and overfitting + Kernel function: Human Intervention
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1943 - McCulloch & Pitts Model

* Early model of artificial neuron
 Generates a binary output
* The weights values are fixed

SN

1
X %
inputs  x, () Ws éﬁ‘\ ~ output
X, |
Threshold
X w




1958 - Perceptron by Rosemblatt

* Perceptron as a machine for linear classification

* Main idea: Learn the weigths and consider bias.
* One weight per input
 Multiply weights with respective inputs and add bias
* If result larger than threshold return 1, otherwise O

’\ 2 " '::::3\:"-;"// - |
. . 'l."lf.:.““ ,-"'/ . 1
INnputs ‘hJ = output | | -, e
activation i
function L

q 3 2 1 [1] 1 2 3 4




Activation functions

Threshold Function/ Hard Limiter Linear Function sigmoid Function
Good for dassification Simple computation Continuous & Differentiable
1
a=o(zx)=
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First Al winter

* The exclusive or (XOR) cannot be
solved by perceptrons

* Neural models cannot be applied
to complex tasks
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First Al winter

* But, can XOR be solved by neural
networks? Output

layer
* Multi-layer perceptrons (MLP) Hidden
can solve XOR layer

 Few years later Minsky built such , o=———
MLP layer ‘




e Main idea:

* Densely connect artificial neurons
to realize compositions of non-

linear functions

 The information is propagated from

the inputs to the outputs
* Directed Acyclic Graph (DAG)

* Tasks: Classification, Regression
 The input data are n dimensional,

usually the feature vectors

)

Multi-layer feed forward Neural Network

Output
layer

Hidden
layer
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First Al winter

 How to train a MLP?

* Rosenblatts algorithm not Output
applicable, as it expects to know the layer
desired target. Hidden

* For hidden layers we cannot know layer
the desired target
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1986 - Backpropagation

* Backpropagation revitalize the field

* Learning MLP for complicated functions can be solved
» Efficient algorithm which processes “large” training sets
* Allowed for complicated neural network architectures

» Today backpropagation is still at the core of neural network
training

Werbos (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis,
Harvard University.
Rumelhart, Hintont, Williams (1986). Learning representations by back-propagating errors. Nature

| ~~ 4. | N LA .
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Backpropagation

Learning is the process of modifying the weights of each layer 8, in
order to produce a network that performs some function:

Output
layer

Hidden
layer

SN
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Backpropagation

* Preliminary steps:
* Collect/acquire a training set {X, Y}
* Define model and initialize randomly weights.

* Given the training set find the weights:
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Backpropagation

True label
}\Vt' vectory.
SO ©
\ AN I
SN
VI,“\V
a Hypotesis
a, =h(x; 0)

1) Forward propagation: sum inputs, produce activations, feed-forward
2) Error estimation.
3) Back propagate the error signal and used it to update weights

| ~~ 4. | N LA .
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Backpropagation

Randomly initialize the initial weights

While error is too large

(1) For each training sample (presented in random order)
Apply the inputs to the network
Calculate the output for every neuron from the input layer, through the

hidden layers, to the output layer

(2) Calculate the error at the outputs

(3) Use the output error to compute error signals for previous layers
Use the error signals to compute weight adjustments
Apply the weight adjustments

AR A

Periodically evaluate the network performance
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Backpropagation

* Optimization with gradient descent:
O =0"'-—nVel

* The most important component is how to compute the
gradient

* The backward computations of network return the
gradient

AR A
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Backpropagation I
S

Forward

a] — hz(ng) and Li+1 — Qi

Backward

oL (3az+1)T oL 0L  Oa (3£)T

3—@,_ 3$£+1 .3(114-1 - (9_9.5_3—9.! 3_03&

Recursive rule: Previous layer

Current layer

| ~~ 4. | N LA .



1990s - CNN and LSTM

* Important advances in the field:
 Backpropagation
 Recurrent Long-Short Term Memory Networks (Schmidhuber, 1997)
e Convolutional Neural Networks: OCR solved before 2000s (LeNet, 1998).
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Second Al winter

* NN cannot exploit many layers
* Overfitting

* Vanishing gradient (with NN training
you need to multiply several small
numbers = they become smaller
and smaller)

* Lack of processing power (no GPUs)

* Lack of data (no large annotated
datasets)°
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Second Al winter

* KKernel Machines (e.g. SVMs) suddenly become very popular
e Similar accuracies than NN in the same tasks
* Much fewer heuristics and parameters
* Nice proofs on generalization

SN

A Input space A Feature space




The believers




* Clever way of initializing network weights:

* Train each layer one by one with unsupervised training (using contrastive

divergence)
* Much better than random values

* Fine-tune weigths with a round of supervised learning just as is normal for

neural nets
* State of the art performance on MNIST dataset
©OO0000) h

REM

Cooooo0) ¥ @DGEEJD@ h;

REM
' Y
CO0O000 »  COOO000) # @DDGOG@ i
REM : :
©COC000 » ©COOCOQ) Q000 OD"JJ x
(a) Train RBM (b) Train RBM (¢) Train RBM for h*
for x for h' and y

| ~~ 4. | N LA .
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2006 - Learning deep bellef nets I
.

[Hinton et al.]
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 Hinton' s group implemented a CNN similar to LeNet
[LeCun1998] but...

* Trained on Imagenet with two GPUs

* With some technical improvements (ReLU, dropout, data
augmentation)

2012 - AlexNet

ILSVRC top-5 error on ImageNet

Traditional ML
Vs
Deep models
Vs
Human

22.5

15

7.5

2010 2011 2012 2013 2014 Human 2015

| ~~ 4. | N LA .
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Why so powerful?

* Build an improved feature space
* First layer learns first order features (e.g. edges...)
» Subsequent layers learns higher order features (combinations of first
layer features, combinations of edges, etc.)
* Final layer of transformed features are fed into supervised layer(s)

ii’ﬂ-u:[ .
AT
kel Bl

R e
: ."lnf-'"'
" |

Parts combine
toform objects
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Learning hierarchical representations

* Traditional framework

”j oefe .
Handcrafted — Classification bear
) Features Model

p—

* Deep Learning

| | Layerl HLayerZJ {LayerS I
Pear
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Why Deep Learning now?

* Three main factors:
* Better hardware
* Big data
* Technical advances:
* Layer-wise pretraining
* Optimization (e.g. Adam, batch normalization)

* Regularization (e.g. dropout)




TITAN X FOR DEEP LEARNING

Training AlexNet

&

O = N W h U 08 N

<
7]

16-core Xeon CPU Titan Titan Black Titan X
CUDNN cuDNN

NVIDIA Blog

h__‘ﬁ.. B D N LA
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Big Data

» Large fully annotated datasets

Blg data i< like teenage sey:

€Veryone talks about it,

nobody really knows how to do it,
eVeryone thinks everyone else is

doing it, so everyone claims they

are doing it...



Advances with Deep Learning

* Better:

 Activation functions (RELU)

* Training schemes

* Weights initialization

* Address overfitting (dropout)
* Normalization between layers
* Residual deep learning




Sigmoid activations

* Positive facts:

* Output bounded in [O,1]
* Negative facts

* The gradients at the tails is f
updates 10

0.6

04

* Output can be interpreted as probability

* Always multiply with <1, gradients can be small

at to O, almost no weights

08|

02

-~ a=alx)
/ E— l|llll'1lll'
S
J.f'

0.0

1
-




— sigrmoid
=—=thanh

4t

= RelLU

f(:r:) — m.'rgl.::c((]j gg) —— softplus

* More efficient gradient propagation:
(derivative is O or constant)

* More efficient computation:
(only comparison, addition and multiplication).

* Sparse activation: e.g. in a randomly initialized networks, only
about 50% of hidden units are activated (having a non-zero output)

* Lots of variations have been propgsed recently.

| ~~ 4. | N LA .
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Losses

* Sum-squared error (L2) loss gradient seeks the maximum
likelihood hypothesis under the assumption that the
training data can be modeled by Normally distributed
noise added to the target function value.

* Fine for regression but less natural for classification.

* For classification problems it is advantageous and
increasingly popular to use the softmax activation
function, just at the output layer, with the cross-entropy
loss function.
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Softmax and Cross Entropy ‘
-

* Softmax: softens 1 of k targets to mimic a probability
vector for each output.

e’k

softmaz(xy) =

Zj ers

51




Softmax and Cross Entropy

* Cross entropy loss: most popular classification losses
for classifiers that output probabilities:

ly,a) = - y"loga"
k

* Generalization of logistic regression for more than
two outputs.

* These new loss and activation functions helps avoid
gradient saturation.

52
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Stochastic Gradient Descent (SGD) |
-

* Use mini-batch sampled in the dataset for gradient estimate.

B+l _ ot
® |B| Z Vel;

1eB

* Sometimes helps to escape from local minima

* Noisy gradients act as regularization

* Also suitable for datasets that change over time

* Variance of gradients increases when batch size decreases
* Not clear how many sample per batch
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Learning rate

* Great impact on learning performance

loss

low learning rate

high learning rate

good learning rate

54




Momentum

* Gradient updates with momentum

Loss surface
Grodient + momentum

\

\
\
A

* Prevent gradient switching all the time
* Faster and more robust convergence




Adaptive Learning

* Popular schemes

using that gradient and momentum.

Rprop - Resilient BP, if gradient sign inverts, decrease its individual learning
rates, else increase it.

Adagrad - Scale learning rates inversely proportional to sqrt(sum(historical

Nesterov Momentum - Calculate point you would go to if using normal
momentum. Then, compute gradient at that point. Do normal update
values)), such that learning rates with smaller derivatives are decreased less g

RMSprop - Adagrad but uses exponentially weighted moving average,
older updates basically forgotten

Adam (Adaptive moments): Momentum terms on both gradient and
squared gradient (1t and 2" moments) - update based on both

56
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Data augmentation

* Simple preprocessing makes the difference (e.g. image flipping,
scaling)



Data augmentation

* Simple preprocessing makes the difference (e.g. image flipping,
scaling)

M MNone
Flip

B Crop+Flip (train pooling: sum, test pooling: sum)
Crop+Flip {train pooling: none, test pooling: sum)

79.44 9-89

76.97 76.99

eg 07.17

0 5435.

| ~~ 4. | N LA .
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Weights initialization
* Initialization depends on chosen non-linearities and data

s

normalization

* Initial weights are important to find a good balance among
layers and which learns well across all layers.

* Commonis to select initial weights from a uniform distribution
between:

[-c/root(node fan-in), c/root(node fan-in)] (c = 1 Xavier, c = 2 He)
e Can do Gaussian distribution with above as variances

* Lots of other variations and current work

59
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Regularization - Dropout

* For each instance drop a node (hidden or input) and its connections
with probability p and train

* Final net just has all averaged weights (actually scaled by 1-p)
* Asif ensembling 2~ different network substructures




Batch Normalization

* To maintain learning balance renormalize activations at each
layer

* Obtain zero-mean and unit variance inputs: re-normalize the
activation/net values at each input dimension k at each layer

oy _ 2 —E[®)]
\V/ Var[z(F)]

 Want mean and variance of that activation for the entire data
set. Approximate the empirical mean and variance over a mini-
batch of instances and then normalize the activation.

61

[loffe and Szegedy, 2015]

| ~~ 4. | N LA .
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Batch Normalization

* Then scale and shift the normalized activation with two learnable weights
per input, y and B, to attain the final batch normalization for that
activation:

SN

* BN advantages:
— Allows larger learning rates
— Improves gradient flow

— Reduces dependence on initialization

62

[loffe and Szegedy, 2015]

| ~~ 4. | N LA .




o

Deep Residual Learning

* Residual Nets

e 2015 ILSVRC winner

* A CNN with hundreds of layers

* Uses Batch Normalization extensively

* Learns the residual mapping with respect to the identity

* Simple concept which tends to make the function to be learned
simpler across depth

SN

63
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Deep Residual Learning

* Fis aresidual mapping of the desired function H with respect
to identity

* |f the optimal mapping close to identity, small fluctuations.

X
weight layer
F(x) | relu identity
weight layer X




Deep Residual Learning

7x7 conv, 64, /2

7x7 conv, 64, /2|

* Very simple design but deep |

plainnet |

pool, /2 pool, /2

3x3conv, 64 | 33 conv, 64 |
[ 3x3conv,64 | 313 conv, 64
[ 3x3conv,64 | 313 conv, 64

3x3conv, 64 | 313 conv, 64
[ 33conve4 | 33 conv, 64
[ 33convea | 3x3 conv, 64
[ 33conv, 1282 | 3oy, 128,12 | s,

Y

[ 33conv,128 | e

313 conv, 128

3x3 conv, 128

3x3conv, 128 |

313 conv, 128

3x3 conv, 128

€

3x3 conv, 128

3x3 conv, 128

€

3x3 conv, 128

3x3 conv, 128

-«

3x3 conv, 128

33 conv, 128

€«

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3conv,256 |

>

3x3 conv, 256

3x3 conv, 256

L7

3x3 conv, 256

3x3 conv, 256

v

3x3 conv, 256

313 conv, 256

v

3x3 conv, 256

3x3 conv, 256

v

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

S«

3x3 conv, 256

313 conv, 256

33 conv, 256

3x3 conv, 256

€

3x3 conv, 256

3x3 conv, 256

€

3x3 conv, 512, /2

3x3conyv,512,/2 | -,

€

3x3 conv, 512

«

3x3 cony, 512

3x3 conv, 512

3x3 conv, 512 I

-

3x3 conv, 512

3x3 conv, 512

il

3x3 conv, 512

3x3 conv, 512

€

3x3 conv, 512

3x3 conv, 512

avg pool

avg pool

fc 1000

fc 1000 ]

ResNet
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Deep Learning Models

Deep Belief Networks and Autoencoders:

unsupervised learning, employs layer-wise training to initialize
each layer and capture multiple levels of representation
simultaneously.

Encoder Decoder

Input Output

O
O

O00O0
O 00

00O

C00O0

O000O0

O0000

Compressed
Feature Vector

Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527-1554.

Bengio, Y., Lamblin, P, Popovici, P, Larochelle, H. (2007). Greedy Layer-Wise Training of Deep
Networks, Advances in Neural Information Processing Systems 19
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Autoencoders

* The auto encoder idea is motivated by the concept of a good
representation.

* For example, for a classifier, a good representation can be defined
as one that will yield a better performing classifier.

 An encoder is a deterministic mapping f that transforms an
input vector x into hidden representation y

» Parameters in f: weight matrix W and bias b (an offset vector)

* A decoder maps back the hidden representation y to the
reconstructed input z via g.

* Auto encoding: compare the reconstructed input z to the
original input x and try to minimize the reconstruction error.

| ~~ 4. | N LA .
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Denoising Autoencoders

* Vincent et al. (2010), “a good representation is one that
can be obtained robustly from a corrupted input and
that will be useful for recovering the corresponding clean
input.”

* The higher level representations are relatively stable and
robust to input corruption.

* In denoising auto encoders, the partially corrupted
output is cleaned (de-noised).




1
Denoising Autoencoders I
.

1. Clean inputis partially corrupted through a stochastic
mapping.

2. The corrupted input passes through a basic auto encoder and is
mapped to a hidden representation.

3. From this hidden representation, we can reconstruct z.

Minimize the reconstruction error (cross-entropy or squared
error loss.

XOI&J L—[OOOOOJ :Q 0000
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Stacked Denoising Autoencoders

* Deep architecture: auto encoders stack one on top of another.

* Once the encoding function of the first DAE is learned and
used to reconstruct the corrupted input, we can train the
second level.

* Once the SDAE is trained, its output can be used as the input
to a supervised learning algorithm such as support vector
machine classifier or a multi-class logistic regression.
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Structured Data

* Some applications naturally deal with an input space which
is locally structured - spatial or temporal

* Images, language, etc. vs arbitrary input features
* Deep Learning extremely powerful in this case.

Tomorrow, and
tomorrow, and
tomorrow; creeps
in this petty pace
from day to day,
until the last syll-
able of recorded
time. And all our
yesterdays have

lighted fools the
way to dusty
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Deep Learning Models

Convolutional Neural Networks:

organizes neurons based on animal’s visual cortex system, which
allows for learning patterns at both local level and global level.

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document
Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998
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Convolutional Neural Networks

* CNN: a multi-layer neural network:

- With Local connectivity:

* Neurons in a layer are only connected to a small region of the
layer before it

— Sharing weight parameters across spatial positions:
* Learning shift-invariant filter kernels

* Reducing the number of parameters




CNN Architecture

= "normal'

connects to neural network

several feature maps

non-linear
stage

non-linear
stage

convolutional
stage

non-linear
stage
non-linear
stage
\ convolutional
stage

will have different filters
a(lr‘T) —

q.,
ij Zk,twk,tzz—k,.?—l
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Convolutional Neural Networks

Input . Feature
Normalize
Image maps




Convolutional Neural Networks

Input Feature
Normallze
Image maps

_ Z , - Each image sub-region yields a feature
- k,l 1—=K,]—

map, representing its feature.
Shared weights




Convolutional Neural Networks

Input Feature
Normallze
Image maps

Convolutional filters are learned in a supervised
manner by back-propagating classification error




Convolutional Neural Networks

Input Feature
Normallze
Image maps

yij = flai;)

Non-linearity:
| e.g. Rectified Linear Unit (ReLU)

relulx)

i i i i i
000000




Convolutional Neural Networks

Feature
maps

Input
Image

Normalize

Max pooling

L}

A non-linear down-sampling, to provide translation invariance
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Convolutional Neural Networks

Input . Feature
Normalize
Image maps
Single depth slice
1111 ]2]4
x?; i max yi— k, ] max pqol with 2x2 filters
1 |k|<‘r,|l|<’r J 5|1 6| 7| 8 and stride 2 X 6 | 8
mean or subsample also used 3 | 2 e 3| 4
1| 2 it




Convolutional Neural Networks

Input Feature
Normallze
Image maps

112x112x64

224x224x64

pool

4

!

- o 112
224 downsampling
112

224
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Convolutional Neural Networks

Feature
maps

Input

Normalize
Image

A

* By progressively reducing the spatial size of the representation we
reduce the amount of parameters and computation in the network,
and also control overfitting.
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Convolutional Neural Networks

Input . Feature
Normalize
Image maps
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Deep Learning Models

Recurrent Neural Networks:

connections between units form a directed cycle. This creates an
internal state of the network which allows it to exhibit dynamic

temporal behavior.

Hochreiter, S, Schmidhuber (1997) Long Short-Term Memory, Neural Computation, 9(8):1735-1780,
1997
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RNNs for sequences

Standard Neural Networks (and also CNN):

* Only accepted a fixed-size vector/matrix as input (e.g., an image)
and produce a fixed-size vector as output (e.g., probabilities of
different classes).

« These models use a fixed amount of computational steps (e.g. the
number of layers in the model).

Recurrent Neural Networks are unique as they allow us to operate over
sequences of vectors.

Sequences in the input, the output, or in the most general case both.
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Recurrent Neural Networks

* Anunrolled RNN (in time) can be considered as a deep neural
network with indefinitely many layers:

O :

0
0 0
W s S s

<

t+1
_+.

A

¥ =D —>05—>0—5>0"—
W w W
Unfold
; LT
X xl‘ X

1 xi‘ t+1




Recurrent Neural Networks

(5 o, 0,

St = f(Uxt + WSt—l) VT W N VT VAS
S(T)D :> Or—rw C‘?: -
U

Unfold
U U
xt

—1I t

y =g(Vs;)

X;:input at time
S, : hidden state at time (memory of the network).

f- is an activation function (e.g, sigmoid, ReLU).

U, V, W: network parameters (unlike a feedforward neural network, an RNN
shares the same parameters across all time steps).

g: activation function for the output layer (typically a softmax function).

y: the output of the network at time
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Back Propagation Through Time

* The backpropagation algorithm can be extended to BPTT by

unfolding RNN in time and stacking identical copies of the
RNN.

* As the parameters that are supposed to be learned (U, V and
W) are shared by all time steps in the network, the gradient
at each output depends, not only on the calculations of the
current time step, but also the previous time steps.

* A common choice for the loss function is the cross-entropy
loss.




1
Vanishing gradient
 Definition: The influence of a given input on the hidden layer,
S

and therefore on the network output, either decays or grows
exponentially as it propagates through an RNN.

* In practice, the range of contextual information that standard
RNNs can access are limited to approximately 10 time steps
between the relevant input and target events.

=
.

Solution: LSTM networks. e

||||||



Long Short Term Memory (LSTM)

* An LSTMis a special kind of RNN
architecture, capable of learning
long-term dependencies.

NET OUTPUT

OUTPUT GATE

* AnLSTM can learn to bridge time
intervals in excess of 1000 steps.

* This is achieved by multiplicative FORCET OATE
gate units that learn to open and
close access to the constant error
flow. NET INPUT

INPUT GATE




Long Short Term Memory (LSTM)

e LSTM networks introduce a new N
structure called a memory cell.

OUTPUT GATE

* Each memory cell contains four

main elements:
- Input gate
- Forget gate FORGET GATE
— Output gate

INPUT GATE

— Neuron with a self-recurrent

NET INPUT

* These gates allow the cells to keep
and access information over long LSTM Memory Cell
periods of time.
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Long Short Term Memory (LSTM)

NET OUTPUT

* i :input gate, how much of the new information will be
let through the memory cell.

OUTPUT GATE

* f:forget gate, responsible for information should be
thrown away from memory cell.

* 0:output gate, how much of the information will be

passed to expose to the next time step. ORGET GATE

* g:self-recurrent which is equal to standard RNN
INPUT GATE

e ¢, internal memory of the memory cell

NET INPUT

.S, hidden state

* y:final output
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Long Short Term Memory (LSTM) I
<

* i:input gate, how much of the new information will be let through the memory cell.

* f:forget gate, responsible for information should be thrown away from memory cell.

* 0:output gate, how much of the information will be passed to expose to the next time step.
* g:self-recurrent which is equal to standard RNN

« ¢, internal memory of the memory cell

.S, hidden state

* y:final output e [ = o-(xtU1 + s, W )
e f= o(x U +s,_WT)
e 0= o(xU°+s,_{W?)
e g = tanh(x, U9 + s,_ W9)

* Ct=Cq1°of+g el
e s; = tanh(c¢c;) e o0

e y= softmax(Vs;)
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Long Short Term Memory (LSTM)
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The future of I
Deep Learning <
iy




New models

"Generative Adversarial Networks is the most interesting
idea in the last ten years in machine learning."
Yann LeCun, Director, Facebook Al
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* Lots of research on generative models to create probabilistic models
of training data with ability to generate new images, sentences, etc.

Deep Generative Models

N01se N(O 1)

Generative
Model
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Deep Generative Models

Generative Adversarial Networks (GANSs)

* Generator net produces samples x close to training samples

* Discriminator net (adversary) must differentiate between samples from
the generative net and the training set

* Use error feedback to improve task of both nets, until discriminator can
no longer distinguish, then can discard discriminator net - increasingly
difficult for humans to distinguish

Real
Samples
Latent

E

4).\?\;._, D Is D

; ‘. Correct? ‘

i v Discriminato

A \“-_"/‘

G " Generated H
enerator Fake

Y Samples

‘ 1 Fine Tune Training
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Open Issues
Why it works?

The Unreasonable Effectiveness of Learning Deep Features
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Open Issues

Scale: larger and larger nets... ResNet 152 [ayers
(ILSVRC 2015)

AlexNet, 8 layers : B — VGG, 19 layers — GoogleNet, 22 layers warmm
(LSVRC2012l ¥ (ILSVRC2014) (LSVRC2014) =
= e =

i

a
.
Y 5 b

B e
B 0
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0 0 E B B
B e
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Open Issues

Scale: how to stop this???

PERFORMANCE/COMPUTE

NEURAL NETWORK SIZE
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Deep Learning & Data

Deep learning

Performance

Amount of data

¥ https://www.linkedin.com/pulse/how-artificial-intelligence-revolutionizing-finance-del-toro-barba

ﬁr - = :l



Open Issues

Unsupervised Learning

B —e™ R Wi ST




Open Issues

Life-long Learning

rCont'inual Experiencel

Continual Learning

o Guidance
== 4 (Optional)

\ N
e

[

§ IIIH:'::-

~ Knowledge

[Eaton]




* Much recent excitement, still much to be discovered

* More work needed to understand how and why deep
learning works so well - How deep should we go?

‘1
Summary
* Impressive results
* Works well in structured/Markovian spaces - CNNs, etc.
S

* Potential for significant improvements

117




