

Deep Learning

- R — ——
e) “-I'g U
FELS S 3 R
* '.} A) f' >
17& m'-\ |
=", 7
P ; . B
What society thinks I do What my friends think I do What other computer
scientists think | do

TN

What | think I do What | actually do

- What mathematuzlans think I do

\. \&

'-_' o

—

o

)

Outline

* Deep Learning Frameworks

* Introduction to TensorFlow
- Examples (linear regression, MNIST)

e Introduction to Keras
- Examples (MNIST MLP & CNN)

D

Deep Learning I
Frameworks -
iy

D

Deep Learning Frameworks

* Many different frameworks over the past few years...

Chainer Deeplearning4j

™
MiNerva mxnet (D ; theano ¥ “torch

Tensor

T

Deep Learning Frameworks

TensorFlow Google Brain, 2015 (rewritten DistBelief)
Theano University of Montréal, 2009
Keras Francois Chollet, 2015 (now at Google)
Torch Facebook Al Research, Twitter, Google DeepMind

Caffe Berkeley Vision and Learning Center (BVLC), 2013

Deep Learning Frameworks

 Which framework to choose? Look at GitHub...

O Features Business Explore Markeiplace Pricing Sign in o Sign up

Built for
developers

GitHub is a development platform inspired by the
way you work. From open source to business,

you can host and review code, manage projects,

Use at one and sew ters.
and build software alongside millions of other

developers. GitH

Platform updates

See recent updates

Deep Learning Frameworks

Comparison of GitHub Contributors
for Deep Learning Frameworks

Neon
Theano
Torch
MxNet ‘
iy
CNTK

Caffe

Tensorflow

||'I'|r

[=]

100 200 300 400 500 600 700

[Rubashkin]

M Contributors

| ~~ 4. | N LA .

Deep Learning Frameworks

Comparison of GitHub Interest
for Deep Learning Frameworks

Neon

Theano

Torch
MxNet a
CNTK

Caffe

Tensorflow

r'rrrrr

=]

10000 20000 30000 40000 50000 [Rubashkin]

M Fork M Star

Y NARAAE B

Deep Learning Frameworks

Comparison of GitHub Commits
for Deep Learning Frameworks

800000
700000
600000
500000
400000
300000
200000
100000
| !
- , | ——
0 1
=t <r = =t =t =t T5} L [Tp] [Ty Ty} Ty} V=) w w [¥s) o o
2 9 9 9 9 5 < 5 S o 5 5 < < o < o -
[s = = o = = — = = o = | -] = e o =
=282 8:22°82=2:23°82 _
[Rubashkin]
e Tensorflow == Caffe MXNet Torch
s N\eon e=——=Theano e CNTK

| ~~ 4. | N LA .

T

Community and Resources

e (Github, groups, discussions...)
- For CNNs Caffe has the largest community
- TensorFlow's is already large and growing
- Keras community is growing
- Theano s and Lasagne s community are declining

AR A

Pioneered the use of a computational graph

General machine learning tool

l
Theano t h cano
Maintained by Montreal University group
s

Symbolic differentiation
Use of Lasagne and Keras

Very popular in the research community, but not much elsewhere.
Falling behind

1
Torch tOI’Ch I
<

Mixed language:
- C/CUDA backend built on common backend libraries
- Lua frontend

Flexibility: existing building blocks from the community can be easily
integrated

Automatic differentiation
Modularity
Speed

(People hate Lua) — very recently PyTorch

| ~~ 4. | N LA .

- Especially good for CNN and Computer Vision
- Extremely easy to code

- Easy to use pretrained models

- Matlab and Python interface

- Easy to include different libraries

- Layer as building block and many layers already
implemented online

1
Caffe C af fe
* Pros:

<

- No auto-differentiation
- Need to write C++/CUDA for new GPU layers
- Not good for RNN

— Cumbersome for big networks (ResNet)

1
Caffe Caffe
e Cons:

<

- creation of the training network for learning and test
network(s) for evaluation

- iterative optimization by calling forward/backward and
parameter updating

- (periodical) evaluation of the test networks

- snapshotting of the model and solver state throughout
the optimization

‘1
Caffe C af fe
* Main steps:

S

Caffe Cafte

 Models:

layer { layer { layer {
name: "pooll" name: "convl" name: "loss"
type: "Pooling" type: "Convolution” type: "SoftmaxWithLoss"
pooling param { bottom: "data" bottom: "fc8"
kernel_size: 2 top: "convl" bottom: "label"
stride: 2 param { top: "loss™
pool: MAX lr mult: © }
} decay _mult: ©
bottom: "convl" }
top: "pooll” convolution_param {
} num_output: 64
kernel _size: 3
pad: 1
¥

Caffe Caffe

e Solver:

base 1r: 0.01 begin training at a learning rate of 0.01 = le-2

+

1r _policy: "step” learning rate policy: drop the learning rate in "steps”

by a factor of gamma every stepsize iterations

H# H

gamma: 0.1 drop the learning rate by a factor of 10

(i.e., multiply it by a factor of gamma = 0.1)

H

stepsize: 100000 drop the learning rate every 100K iterations

+

max_iter: 350000 # train for 350K iterations total

Which framework to chose

_ Architecture:
Tutorials CNN RNN i
Languages and training modeling modeling Easﬁt:.;ﬁ:rand Speed Mtgfllpl?:gpu corﬁera?:?ble
materials capability capability front end o i
Python,
Theano Cist ++ ++ ++ + ++ + +
Tensor- Pvthon ++ ¥
Flow Y
Lua, Python
Torch (new) o
C++ = ¥ *
[Rubashkin]

1
Which framework to chose I
-

* You work in industry:
- TensorFlow, Caffe

You want to work “seriously” on new models (research-oriented):
- TensorFlow, Theano, (Torch)

You dont have time and you are just curious about deep learning:
- Keras, Caffe

* You want to use deep learning for educational purposes:
- Keras, Caffe

TensorFlow

1
TensorFlow
* An open-source software library for Machine Intelligence

s

» Especially useful for Deep Learning

* For research & industry

% r\

Tensor

TensorFlow

TensorFIow o Install Develop APIT1.1 Deploy Extend REC Versions GITHUB

TensorFlow 1.2rc0 has arrived! Introducing TensorFlow Research Cloud The 2017 TensorFlow Dev Summit

We're excited to announce the release of TensorFlow 1.2rc0! We're making 1,000 Cloud TPUs available for free to Thousands of people from the TensorFlow community
Check out the release notes for all the latest. accelerate open machine leaming research. participated in the first flagship event. Watch the keynote
and talks.

UPGRADE NOW LEARN MORE WATCH VIDEOS

About TensorFlow

TensorFlow™ is an open source software library for numerical computation using data flow
graphs. Nodes in the graph represent mathematical operations, while the graph edges

represent the multidimensional data arrays (tensors) communicated between them. The

flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a

desktop, server, or mobile device with a single APL. TensorFlow was originally developed by

researchers and engineers working on the Google Brain Team within Google's Machine

Intelligence research organization for the purposes of conducting machine learning and deep

neural networks research, but the system is general enough to be applicable in a wide variety

of other domains as well.

News

Announcing TensorFlow 1.0 Celebrating TensorFlow’s First Year A Neural Network for Machine Translation, at
Production Scale

In just its first year, TensorFlow has helped researchers, It has been an eventful year since the Google Brain Team

engineers, artists, students, and many others make progress open-sourced TensorFlow to accelerate machine leaming Ten years ago, we announced the launch of Google

with everything from language translation to early detection research and make technology work better for everyone. Translate, together with the use of Phrase-Based Machine
of skin cancer and preventing blindness in diabetics. We're There has been an amazing amount of activity around the Translation as the key algorithm behind this service. Since
excited to see people using TensorFlow in over 6000 project: more than 480 people have contributed directly to then, rapid advances in machine intelligence have improved
open-source repositories online. TensorFlow.

our speech recognition and image recognition capabilities,

S A U Ut PP JU S S T DU

TensorFlow

Tensorl low
Tensors: multidimensional arrays

Mode-3

Mode-1

Mode-2

TensorFlow <"

Tensortf
Tensors: multidimensional arrays

The central unit of data in TensorFlow is the tensor. A tensor consists of a set of primitive values shaped into an array of
any number of dimensions. A tensor's rank is its number of dimensions. Here are some examples of tensors:

a rank @ tensor; this is a scalar with shape []

2., 3.] # a rank 1 tensor; this is a vector with shape [3]
., 2., 3.], [4., 5., 6.]] # a rank 2 tensor; a matrix with shape [2, 3]
2., 3.11, [[7., 8., 9.]1]1] # a rank 3 tensor with shape [2, 1, 3]

. B

TensorFlow Y)
TensorFlow
Flow: Graph describing operations
S

)

DataFlow Graph

» Computation is defined as a directed acyclic graph
(DAG) to optimize an objective function

* Graph is defined in high-level language (Python, C++)
* Graph is compiled and optimized

» Graph is executed (in parts or fully) on available low
level devices (CPU, GPU, Android%/

 Data (tensors) flow through the graph

| ~~ 4. | N LA .

TensorFlow Idea

edges(tensors)

Nodes(operations)

l
Graph

Session

cpul cpuz

gpul

Devices

| ~~ 4. | N LA .

1
Automatic differentiation I
-

» TensorFlow can compute gradients automatically
- Reverse automatic differentiation

- In a nutshell:

* When you define an operator (op), you also define together how
its derivatives are computed (of course most of the common ops
are already provided).

* After you write a function by stacking a series of ops, the program
can figure out by itself how should the corresponding derivatives
be computed (usually by keeping some computation graphs and
using the chain rule).

* The benefit is obvious as it saves us from working out the math,
writing the code, verifying the derivatives numerically...

T

Main Components

The main components of Tensorflow:

— Variables: Retain values between sessions, use for
weights/bias

- Nodes: The operations
- Tensors: Signals that pass from/to nodes

- Placeholders: used to send data between your
program and the tensorflow graph

- Session: Place when graph is executed.

AR A

D

What we do

* Create a graph using code C++ or Python and ask
TensorFlow to execute this graph.

: B

client: construct graph master: execute operations
(based on your code) (based on TensorFlow’s code)

¥ = tf.placeholder(tf.float32, [None, 784])
W = tfVariable(tf.zeros([784, 10]))

S -
. return executed result
: Execute
hd —

sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

What we do

e Execution
Co S | Session Run co
 client | * master
““““““ h I
I Fxecute Subgraph
' worker ‘

__

)

Hello world

* Multiply two numbers
* Main phases: client master

- Import TensorFlow library

- Build the graph
- Create a session
— Run the session

) |

Hello world

* Multiply two numbers

= mult.py |

import tensorflow as tf
tbuild graph
tf.constant(8)
tf.constant(9)
tf.multiply(x,y)

(TRl S ¢
i uwnu

#create session
sess =tf.Session()

11 #run session
12 out z = sess.run(z)

14 print("out_z: %d"%out z)

1
Placeholders
* Allow exchangmg data with your graph variables

.

through "placeholders”.
* They can be assigned when we ask the session to run

Import tensorflow
import tensorflow as tf

Build graph
tf. placehﬂlder{ float')
= tf.placeholder('float’)

[il w TS & S
I

— '.I
|r (T:.:llrl

y = tf.multiply(a,b)

1
[

Create session passing the graph
session = tf.Session()

Put the values 3,4 on the placeholde
print session.run(y,feed dict= {a: 3, b:

Linear Regression

0.50 : : . : . 0.50 : : . . .
|t * Original data
D45 | N *] 0.45 | .
k3
0.40 | * e 1 D40} l
*
* i
ek
035 | ";* & ko 1 035 | .
R -
030} """’E it 1 030} -
A *};* * ¥ i
™
D25 | "y Pre *#c 1 0.25 | .
T
D20 * o 1 D20} .
k3 **
*
015 015

-15 -1.0 -0.5 0.0 05 10 15 1o

D

Linear Regression

ijport numpy as np
import tensorflow as tf

Model parameters
W= tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)

Model input and output
x = tf.placeholder(tf.float32)
linear model =W * x + b
y = tf.placeholder(tf.float32)

loss
loss = tf.reduce sum(tf.square(linear model - y)) # sum of the squares

Linear Regression

1€ # optimizer
1 optimizer = tf.train.GradientDescentOptimizer(0.01)
16 train = optimizer.minimize(loss)

= f.’ﬁ'l.’?l.’?g}‘ data
rain = [1,2,3,4]
_ rﬂin = [ﬂt_].‘-_zf_3]

24 # training loop

25 init = tf.global variables initializer()

2€ sess = tf.Session()

2 sess.run(init) # reset values to wrong

2 for i in range(1060):

29 sess.run(train, {x:x train, y:y train})

3¢ # evaluate training accuracy

31 curr W, curr b, curr loss = sess.run([W, b, loss], {x:x train, y:y train})
32 print("W: %s b: %s loss: %s"s(curr W, curr b, curr loss))

—
V)
Z
>3

e (Classification of hand-written di

X
4]
O
w0
>~
v
pusd
o0

[0

X
o

(0 0)

N
P

(0 0)

N
=
@)
pust

o

N

&)
()

iy
00

images (MNIST data set).
» Full data set of 70k examples: http://yann.lecun.com/exdb/mnist

Q-2 Fhe Nt o
O~nNmMmAva oo o~
Q~MNMYLVY NEos

QNN ™Y
D—N T Yo
QN TR YN
O~ I "9
ONN O WV -8
Q—nd T 0
O~ w0
QN PR, e
VD—NP-h2
DT HO
VD—chmx Yo
QN M T NS

NGO T
00 O
T~ O D
b O
M~ O~
™ On
N o
LN
T o N
i % o
N Oy o
N

T

MNIST

* As common in machine learning, the MNIST data is split into three
parts:

— Training: 55,000 images

- Test: 10,000 images

- Validation: 5,000 images.

- Dataset contains pair of images and labels.

- Useful to test hyper parameters and generalization performance

SN

Original Set
< '

Training Testing

Training Validation Testing

S

MNIST

* As common in machine learning, the MNIST data is split into three
parts:

— Training: 55,000 images

- Test: 10,000 images

- Validation: 5,000 images.

- Dataset contains pair of images and labels.

- Useful to test hyper parameters and generalization performance
Error

F

SN

validation

train

\

S

MNIST

« Eachimage is 28 pixels by 28 pixels.

- We can flatten this array into a vector of 28x28 = 784 numbers.

- Vector representation but loosing structure.

0

0

0

0

0

=]

=

0

0

0

0

=]

[=]

[=]

=]

=

=

=]

=

o

=

=

=

[=]

=]

=

=]

=

L}

=

i

4

Import data

e Download and read the data automatically:

& MNIST softmax.py ‘

No Python interpreter configured for the project

13 b JTimi+atd {npr TF | 7+~
1z # Llimitations under tne License.

16 A very simple MNIST classifier.

18 See extensive documentation at

19 http://tensorflow.org/tutorials/mnist/beginners/index.md
21 from future import absolute import

22 from future import division

23 from future import print function

25 import argparse
26 import sys

28 from tensorflow.examples.tutorials.mnist import input data
import tensorflow as tf

32 FLAGS = None

35 def main():
36 # Import data
37 mnist = input data.read data sets(FLAGS.data dir, one hot=True)

reate the model
tf.placeholder(tf.float32, [None, 784])
tf.Variable(tfT.zeros([784, 10]))
tf.Variable(tf.zeros([10]))
tf.matmul(x, W) + b

LI | | B

|
[
- O=E X R

et

o

Import data

 We get:
mnist.train.images: tensor with a shape of [55000, 784]

mnist.train.labels:a[55000, 10] array of floats - vector
notation for class labels.

mnist.train.xs
mnist.train.ys

T J—
- = = 10 | - - -

55000

784 L/

—I_ﬂ
NN training

» Several things to decide (data, hyperparameters):
- Training data
 Representation (vectors, images, text).
* Normalization

- Architecture
* Layers: type, shape, number.
* Activation functions
 Output type (according to task, e.g. classification/regression) and loss function.

SN

- Learning algorithm
* Initialization.
« Update scheme.
* Learning rate.
* Momentum.
 Regularization (weight decay, dropout).
 Batch normalization
 Stopping criteria

| ~~ 4. | N LA .

D

Softmax regression

Recap: softmax regression to output probabilities

Two steps: add up the evidence of our input being in certain classes and
then convert evidences into probabilities.

evidence; — E Wi s + by
ki

_ exp(@)
> coftmex(z) - = et

y — softmax(evidence)

+by | —> —>@

+by | —>

Xewyos
l
®

T

Softmax regression

* Output: As we do a weighted sum of the pixel intensities we can inspect
them.

* Red: negative weights.
 Blue: positive weights.

0 1 2 3 4
5 6 7 8 9

| ~~ 4. | N LA .

—I_ﬂ
Softmax regression

 Matrix Notation

Y1 Wii Wia Wis| |21 by
Y2 | = softmax W271 WQ,Q WQ’S | Lo | + b2
Y3 Ws1 Wsza Wsa| |Z3 b3

MNIST

* We use variables and placeholders to create the model:
- Look at the dimensionality
- What is missing?

i;port ce

FLAGS = None

def main():

Import data

mnist = input data.read data sets(FLAGS.data dir, one hot=True)
eate the model
.placeholder(tf.float32, [None, 784])
NVariable(tf.zeros([784, 10]))
Mariable(tf.zeros([10]))
.matmul(x, W) + b

11 | I [

- o= x
T
—h —h —h —h O

MNIST

e Model training:
- Use cross-entropy () = = > _y/los(u)
- Optimize with gradient descent with a learning rate O.5.
- Many other optimizers (link)

Define loss and optimizer

= tf.placeholder(tf.float32, [None, 10])

H=

b

The raw formulation of cross-entropy,

tf.reduce mean(-tf.reduce sum{y * tf.log(tf.nn.softmax(y)).
o

- I T T F = -~ —TT7T9h
reguction J.u?':'J._eS—llJ._ll_.l'_.l'
can be numerically unstable.

50 here we use tf.nn.softmax cross entropy with logits on the raw

outputs of 'y', and then average across the batch.

ross_entropy = tf.reduce mean(
tf.nn.softmax cross entropy with logits(labels=y , logits=y))

train step = tf.train.GradientDescentOptimizer(0.5).minimize(cross entropy)

L E E EE Y

https://www.tensorflow.org/api_guides/python/train#Optimizers

MNIST

Run the session
- Training considering mini-batches
- Evaluate performance (are they good?)

sess = tf.InteractiveSession()

tf.global variables initializer().run()

Train

for in range(1000):
batch xs, batch ys = mnist.train.next batch(100)
sess.run(train step, feed dict={x: batch xs, y : batch ys})

Test trained model
correct prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y , 1))
accuracy = tf.reduce mean(tf.cast(correct prediction, tf.float32))
print(sess.run(accuracy, feed dict={x: mnist.test.images,

y : mnist.test.labels}))

if name == "'__main__":
parser = argparse.ArgumentParser()
parser.add argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data’,
help="Directory for storing input data')
FLAGS, unparsed = parser.parse known args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

TensorBoard

rflow: 'module’' c x | ¥ Tenso

3oard: Visualizi x | B Ten 0 B TensorBoard New Tab

@ | 127.0.1.1:600¢ G || Q search

SCALARS IMAGES AUDIO DISTRIBUTIONS HISTOGRAMS EMBEDDINGS

Fit to screen Main Graph
Download PNG

train N
Run train

TEERLEE

Session
runs (10} Y
1 accuracy ' ! Lcross_enlropyJ
Upload Choose File —_— —
. -] A
Traceinputs 1 1 ! ’
Color @ Structure H E [layer2]
= O Device i
colors same substructure :
! —
— unique substructure H \ dropout |

/

I\ input,reshape) l layer1 i

» i

(input]

B = K

3
c

Graph (*= expandable)

Namespace*

)

TensorBoard

» Training a massive deep neural network can be
complex and confusing.

* TensorBoard: visualization tools to facilitate
models understanding and debug.

* Visualize graph, plot quantitative metrics about
the execution of the graph, show additional data
like images used, visualize statistics.

AR A

D

TensorBoard
* Modify code to generate summary data.
.

(1) Create graph and decide which nodes you
would like to collect summary data.

Example MNIST:
* Monitor learning rate and loss.

» Use tf.summary.scalar for to the nodes that output the learning
rate and loss respectively.

D

TensorBoard

* Modify code to generate summary data.

(1) Create graph and decide which nodes you
would like to collect summary data.

Example MNIST:

* Visualize the distributions of activations coming off a particular
layer, or the distribution of gradients or weights.

* Use tf.summary.histogram.

—I_ﬂ
TensorBoard

* Modify code to generate summary data.

(1) Create graph and decide which nodes you
would like to collect summary data.

The summary nodes are peripheral nodes added
to the graph: none of the ops we are currently
running depend on them.

AR A

1
TensorBoard
* Modify code to generate summary data.

s

(2) To generate summaries, run all of the summary
nodes.

(2a) Use tf.summary.merge_all to combine them.

(2b) Run the merged summary op, which will generate
a serialized Summary protobuf object with all of your
summary data at a given step.

(5) Write summary data to disk, pass the summary
protobuf to a tf. summary.FileWriter.

TensorBoard

F. .

elisa@elisa-N552VW: ~
elisa@elisa-N552VW:~$ python MNIST tb.py |

TensorBoard

ol elisa@elisa-N552VW: ~

elisa@elisa-N552VW:~$ tensorboard --logdir=/home/felisa/tf_code/mnist

I tensorflow/stream executor/dso loader.cc:135] successfully opened CUDA library
libcublas.s0.8.0 locally

I tensorflow/stream executor/dso loader.cc:135] successfully opened CUDA library
libcudnn.so.5 locally

I tensorflow/stream executor/dso loader.cc:135] successfully opened CUDA library
libcufft.so.8.0 locally

I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library
libcuda.so.1 locally

I tensorflow/stream executor/dso loader.cc:135] successfully opened CUDA library
libcurand.so0.8.8 locally

Starting TensorBoard 41 on port 6006
{?iu can navigate to http://127.0.1.1:6006)
AT

| ~~ 4. | N LA .

TensorBoard

* Other features: Embedding visualization.

DATA A | Paints: 10000 | Dimension: 784 PI— e 10 ~iisar
R FIGLL: Bl | T i
L,
bnist with images 10K = @ labal
label
a0 180 i E
".
L T ?:f
.2 132 ;. f
3 ¥
e 4
]
5
& =, g
o SR
7l
L 4 et 4
i? k1 .:, i?
T-5ME A ?;1; A
??.1; iE N
Ciiffisnshon Flul ‘ [} [':T
Perplaxity @@ —@ 25 7.
| L) 1
Leaming g . 0 RPN) R) g
rale ;"77‘7 . gow A AT i iy
Re-run
Heration; 438
How 10 usi 1-SME affectively,
u BODKMARKS (0) @ ~

| ~~ 4. | N LA .

IKeras

« Keras (KEpaC) means horn in Greek.

* In the Odyssey it is mentioned that dream spirits are
divided between:

* those who deceive men with false visions, who arrive to Earth through a
gate of ivory

* those who announce a future that will come to pass, who arrive through a
gate of horn.

D

* Easy-to-use Python library

IKeras

* Why Python? Easy to learn, powerful libraries (scikit-
learn, matplotlib...)

* [t wraps Theano and TensorFlow (it benefits from the
advantages of both)

* Guiding principles: modularity, minimalism,
extensibility.

networks and combinations of the two.

1
Keras
* Use both GPU and CPUs
* Easy to use both convolutional networks and recurrent
* Supports arbitrary connectivity schemes (including
multi-input and multi-output training) <
* Many easy-to-use tools: real-time data augmentation, O
callbacks (Tensorboard visualization)

IKeras

» Keras gained official Google support

Big deep learning news: Google
Tensorflow chooses Keras

Buried in a Reddit comment, Francois Chollet, author of Keras and Al researcher at
Google, made an exciting announcement: Keras will be the first high-level library

added to core TensorFlow at Google, which will effectively make it TensorFlow's
default API. This is excellent news for a number of reasons!

As background, Keras is a high-level Python neural networks library that runs on top
of either TensorFlow or Theano. There are other high level Python neural networks
libraries that can be used on top of TensorFlow, such as TF-Slim, although these are
less developed and not part of core TensorFlow.

Using TensorFlow makes me feel like I'm not smart enough to use TensorFlow;
whereas using Keras makes me feel like neural networks are easier than | realized.
This is because TensorFlow’s APl is verbose and confusing, and because Keras has
the most thoughtfully designed, expressive AP| I've ever experienced. | was too
embarrassed to publicly criticize TensorFlow after my first few frustrating
interactions with it. It felt so clunky and unnatural, but surely this was my failing.
However, Keras and Theano confirm my suspicions that tensors and neural networks
don’t have to be so painful. (In addition, in part 2 of our deep learning course
Jeremy will be showing some tricks to make it easier to write custom code in
Tensorflow.)

For a college assignment, | once used a hardware description language to code
division by adding and shifting bits in the CPU’s registers. It was an interesting

Home

exercise, but | certainly wouldn’t want to code a neural network this way. There are
About a number of advantages to using a higher level language: quicker coding, fewer
Our MOOC bugs, and less pain. The benefits of Keras go beyond this: it is so well-suited to the
concepts of neural networks, that Keras has improved how Jeremy and | think about
neural networks and facilitated new discoveries. Keras makes me better at neural
networks, because the language abstractions match up so well with neural network

concepts.

D

* Weaknesses:

IKeras

* Less flexible
* Some stuff not there yet (no RBM for example)

* Less projects available online (e.g. with respect to
Caffe)

Model

* Amodel is a sequence or a graph of standalone, fully-
configurable modules that can be plugged together
with as little restrictions as possible.

1
Modularity
* Amodel is a sequence or a graph of standalone, fully-

s

configurable modules that can be plugged together
with as little restrictions as possible.

* Modules:

 neural layers

 cost functions

* optimizers

* initialization schemes
* activation functions

* regularization schemes

e your own module

* Simplicity: modules should be made extremely simple.

TensorFlow:

-
45

46 kernel = tf.Variable(tf.truncated normal([3,3,64,64],type=tf.float32,stddev=1e-1), name='weights')
47 conv = tf.nn.conv2d(self.convl 1, kernel, [1, 1, 1, 1], padding='SAME")

48 biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32), trainable=True, name='biases')
49 out = tf.nn.bias add(conv, biases)

560 self.convl 2 = tf.nn.relu(out, name='blockl conv2')

51

\
Keras
* Extensibility: modules are easy to add.
s

Keras:

52
53
54 x = Convolution2D(64, 3, 3, activation='relu', border mode='same', name='blockl conv2"')(x)
55

T

Install Keras

 Extremely easy:

>> source tensorflow/bin/activate
>> python
>> pip install keras

>> import keras as k

Sequential model

 Sequential models are linear stack of layers

* Treat each layer as object that feeds the next layer

47 model = Sequential()

48 model.add(Conv2D(32, kernel size=(3, 3),

49 activation="relu’',

50 input shape=input shape))

51 model.add(Conv2D(64, (3, 3), activation="relu'))

52 model.add (MaxPooling2D(pool size=(2, 2)))

53 model.add(Dropout(0.25))

54 model.add(Flatten())

55 model.add(Dense(128, activation="relu'))

56 model.add(Dropout(0.5))

57 model.add(Dense(num classes, activation='softmax"'))

59 model.compile(loss=keras.losses.categorical crossentropy,
60 optimizer=Keras.optimizers.Adadelta(),
61 metrics=["'accuracy'])

model.fit(x train, y train,

6 batch size=batch size,

65 epochs=epochs,

66 verbose=1,

67 validation data=(x test, y test})

| ~~ 4. | N LA .

Graph model

* Useful to create two or more independent networks to diverge or merge
 Useful to create multiple separate inputs or outputs

» Different merging layers (sum or concatenate)

46

47 model = Graph()

48 # Load the input

49 model.add input(name='inputl®', ndim=4)

50 # Convolution Neural Network architecture (5 convolution layers, 3 pooling layers)

51

52 model.add node(Convolution2D(nb filters[0], image dimensions, nb conv[@], nb conv[0], activation="relu', border mode='full'), name='conv2', 1nput "inputl")
53 model.add node(Convolution2D(nb_filters[@], nb filters[8], nb_conv[0], nb_conv[@], activation='relu', border mode='full'), name='conv3', input="conv2')

54 model.add node(MaxPooling2D(poolsize=(nb | pool[8], nb pool[@])], name="pooll', input='conv3")

S

model.add node(Convolution2D(nb filters[1], nb filters[@], nb conv[@], nb conv[@], activation='relu', border mode='full'), name='conv4', input="pooll")
model.add node(Convolution2D(nb filters[1], nb filters[1], nb conv[1], nb conv[l], activation='relu"', border mode="full"'), name='conv5', input="conv4')
58 model.add node(MaxPooling2D(poolsize=(nb | pool[1], nb pool[l])], name="pool2', input='conv5"')

60 model.add node(Flatten(), name="flatten', input='pool2')

62 model.add node(Dense(nb filters[-1] * (shapex / nb_pool[@] / nb _pool[1]) * (shapey / nb _pool[@] / nb pool[l]), 512, activation='relu', init="uniform'), name
63 model.add node(Dense(512, nb classes, activation='softmax', init="uniform®'), name='dense2', input='densel')

model.add output(name='outputl', input='dense2’', merge mode='sum")
model.compile('sgd", {'outputl':'categorical crossentropy'})
model.get config(verbose=1)

model.fit({ 'inputl’':X train, 'outputl':Y train},batch size=batch size, nb _epoch=nb_epoch)

#model.predict({'inputl':X test})

model.fit(x train, y train,

74 batch size=batch size,
epochs=epochs,

verbose=1,

validation data=(x_test, y test)]]

| ~~ 4. | N LA .

D

Lets run MNIST again

* Homepage
https://keras.io/

https://keras.io/getting-started/sequential-model-guide/#getting-started
-with-the-keras-sequential-model

* Examples:

https://github.com/fchollet/keras/tree/master/examples

* Lets compare a MLP and a CNN...

https://keras.io/
https://keras.io/getting-started/sequential-model-guide/#getting-started-with-the-keras-sequential-model
https://keras.io/getting-started/sequential-model-guide/#getting-started-with-the-keras-sequential-model
https://github.com/fchollet/keras/tree/master/examples

Questions?

