

VIOLATION OF LEPTON FLAVOR UNIVERSALITY AND DARK MATTER FROM COMPOSITE HIGGS MODELS

ADRIAN CARMONA BERMUDEZ CERN-TH PARTICLE AND ASTRO-PARTICLE PHYSICS SEMINAR

Supported by a Marie Sklodowska-Curie Individual Fellowship MSCA-IF-EF-2014

May 19, 2017 Slide 1/37

OUTLINE

1 Introduction

2 Violation of Lepton Flavor Universality in Composite Higgs Models

AC, GOERTZ: PRL 116 2016 NO.25, 251801; ARXIV:1706.XXXXX

3 Composite Dark Matter

BALLESTEROS, AC. CHALA, ARXIV:1704.07388

4 Conclusions

COMPOSITE HIGGS

- One interesting solution to the hierarchy problem is making the Higgs composite, the remnant of some new strong dynamics
 KAPLAN GEORGI '84
- It is particularly compelling when the Higgs is the pNGB of some new strong interaction. Something like pions in QCD
 AGASHE CONTINO POMAROL '04

They can naturally lead to a light Higgs $m_\pi^2 = m_h^2 \sim g_{\rm el}^2 \Lambda^2 / 16 \pi^2$

COMPOSITE HIGGS

- One interesting solution to the hierarchy problem is making the Higgs composite, the remnant of some new strong dynamics
 KAPLAN GEORGI '84
- It is particularly compelling when the Higgs is the pNGB of some new strong interaction. Something like pions in QCD
 AGASHE CONTINO POMAROL '04

They can naturally lead to a light Higgs $m_\pi^2 = m_h^2 \sim g_{\rm el}^2 \Lambda^2 / 16 \pi^2$

TALKING TO FERMIONS

A priori, we have two different ways of introducing the mixing with the elementary fermions:

1 Quadratically, à la Technicolor

$$\frac{\lambda}{\Lambda^{\gamma}}\bar{q}_{L}t_{R}\mathcal{O}(x), \quad [\mathcal{O}(x)] = 1 + \gamma \Longrightarrow m_{q} \sim f\frac{4\pi}{\sqrt{N}} \left(\frac{\mu}{\Lambda}\right)^{\gamma}, \qquad \gamma > 0$$

2 Linearly, via partial compositeness KAPLAN '91

$$\begin{split} \frac{\lambda_L}{\Lambda^{\gamma_L}} q_L \mathcal{O}_L(x), \quad \frac{\lambda_R}{\Lambda^{\gamma_R}} t_R \mathcal{O}_R(x), \quad [\mathcal{O}_{L,R}(x)] = 5/2 + \gamma_{L,R}, \qquad \gamma_{L,R} > -1 \\ \Rightarrow m_q \sim v \frac{\sqrt{N}}{4\pi} \left(\frac{\mu}{\Lambda}\right)^{\gamma_L + \gamma_R} \quad \text{or} \quad m_q \sim v \frac{4\pi}{\sqrt{N}} \sqrt{\gamma_L \gamma_R} \end{split}$$

Very well mimicked by Randal-Sundrum models!

ADS/CFT CORRESPONDENCE

- Models with warped extra dimensions are weakly duals to strongly coupled 4D theories MALDACENA '98
- They provide a calculable framework for composite Higgs models

 The 5D realizations of models where the Higgs is a pNGB are models of gauge-Higgs unification (GHU), π^â(x) ~ A^â₅(x)

ADS/CFT CORRESPONDENCE

We can explain the huge hierarchy existing between the different fermion masses

We also obtain naturally the hierarchical mixing observed in the quark sector

$$\left| U_L^{u,d} \right|_{ij} \sim f_i^q / f_j^q \qquad \left| U_R^{u,d} \right|_{ij} \sim f_i^{u,d} / f_j^{u,d} \qquad i \leq j$$

HIGGS POTENTIAL

- The gauge contribution is aligned in the direction that preserves the gauge symmetry WITTEN '83
- However, the linear mixings $\mathcal{L}_{mix} = \lambda_L^q \bar{q}_L \mathcal{O}_L^q + \lambda_R^t \bar{t}_R \mathcal{O}_R^t + h.c.$ needed to generate the fermion masses

break the NGB symmetry and will be also responsible for EWSB

HIGGS POTENTIAL

The fermion contribution will depend in general of the specific G-irrep of the composite operators $\ensuremath{\mathcal{O}}$

$$\mathcal{L}_{\mathsf{mix}} \sim \lambda_{q} \bar{q}_{\alpha L} (\Delta_{q}^{\alpha})^{I} (\mathcal{O}_{q})_{I} + \lambda_{u} \bar{u}_{R} (\Delta_{u})^{I} (\mathcal{O}_{u})_{I} + \lambda_{d} \bar{d}_{R} (\Delta_{d})^{I} (\mathcal{O}_{d})_{I} + \mathsf{h.c.} \ .$$

One can promote Δ to spurions of ${\it G}$ and expand in powers of λ

$$V \sim m_*^4 \frac{N_c}{16\pi^2} \left[\left(\frac{\lambda}{g_*} \right)^2 V_2(h/f) + \left(\frac{\lambda}{g_*} \right)^4 V_4(h/f) + \dots \right] \qquad m_* = g_* f$$

where

$$V_2(h/f) = c_1 V_2^{(1)}(h/f) + c_2 V_2^{(2)}(h/f) + \dots, \dots$$

The large value of the top mass makes the top contribution (typically) responsible for triggering EWSB and since

$$y_{
m top} \sim Y_* rac{\lambda_q f}{M_Q} rac{\lambda_t f}{M_T} \hspace{0.3cm} ext{and} \hspace{0.3cm} m_H \propto |\lambda|^2/g_*^2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} M_\Psi \ll m_*$$

LIGHT TOP PARTNERS AT THE LHC

We can see e.g. the $MCHM_5,\;$ AC, GOERTZ, JHEP 1505 2015 002

f = 0.8 TeV, $g_* \sim 4.4$. $Y^q_* = 0.7$ is the maximum allowed "Yukawa"

VIOLATION OF LFU IN CHMS

Leptons are typically disregarded since one could naively expect $\lambda_\ell/g_* \ll 1.$ However,

- They are not just a scaled version of the quark sector
- The mixing angles in the lepton sector are highly non-hierarchical
- Neutrinos could have Majorana masses!

1 A 'normal' lepton sector will look like

$$\mathcal{L} \supset \frac{\lambda_{\ell}}{\Lambda^{\gamma_{\ell}}} \bar{\ell}_{L} \mathcal{O}_{\ell} + \frac{\lambda_{e}}{\Lambda^{\gamma_{e}}} \bar{e}_{R} \mathcal{O}_{e} + \frac{\lambda_{\Sigma}}{\Lambda^{\gamma_{\Sigma}}} \bar{\Sigma}_{R} \mathcal{O}_{\Sigma} - \frac{1}{2} M_{\Sigma} \mathsf{Tr} \left(\bar{\Sigma}_{R}^{\mathsf{c}} \Sigma_{R} \right) + \mathsf{h.c.}$$

1 A 'normal' lepton sector will look like

$$\mathcal{L} \supset \frac{\lambda_{\ell}}{\Lambda^{\gamma_{\ell}}} \bar{\ell}_{L} \mathcal{O}_{\ell} + \frac{\lambda_{e}}{\Lambda^{\gamma_{e}}} \bar{e}_{R} \mathcal{O}_{e} + \frac{\lambda_{\Sigma}}{\Lambda^{\gamma_{\Sigma}}} \bar{\Sigma}_{R} \mathcal{O}_{\Sigma} - \frac{1}{2} M_{\Sigma} \mathsf{Tr} \left(\bar{\Sigma}_{R}^{c} \Sigma_{R} \right) + \mathsf{h.c.}$$

2 Since $\|M_{\Sigma}\| \sim \Lambda \sim M_{\rm Pl}$, avoiding too small neutrino masses

$$\left(\mathcal{M}_{
u}
ight)_{\mathsf{light}} \sim v^{2} \epsilon_{\ell}^{2} \epsilon_{\Sigma}^{2} \left(\mathcal{M}_{\Sigma}
ight)^{-1}, \quad \epsilon_{\ell,\Sigma} \sim \lambda_{\ell,\Sigma} \left(rac{\mu}{\Lambda}
ight)^{\gamma_{\ell,\Sigma}}$$

requires $0 \ll \epsilon_{\Sigma}$

1 A 'normal' lepton sector will look like

$$\mathcal{L} \supset \frac{\lambda_{\ell}}{\Lambda^{\gamma_{\ell}}} \bar{\ell}_{L} \mathcal{O}_{\ell} + \frac{\lambda_{e}}{\Lambda^{\gamma_{e}}} \bar{e}_{R} \mathcal{O}_{e} + \frac{\lambda_{\Sigma}}{\Lambda^{\gamma_{\Sigma}}} \bar{\Sigma}_{R} \mathcal{O}_{\Sigma} - \frac{1}{2} M_{\Sigma} \mathsf{Tr} \left(\bar{\Sigma}_{R}^{\mathsf{c}} \Sigma_{R} \right) + \mathsf{h.c.}$$

2 Since $\|M_{\Sigma}\| \sim \Lambda \sim M_{\rm Pl}$, avoiding too small neutrino masses

$$\left(\mathcal{M}_{
u}
ight)_{\mathsf{light}} \sim \mathbf{v}^{2} \epsilon_{\ell}^{2} \epsilon_{\Sigma}^{2} \left(M_{\Sigma}
ight)^{-1}, \quad \epsilon_{\ell,\Sigma} \sim \lambda_{\ell,\Sigma} \left(rac{\mu}{\Lambda}
ight)^{\gamma_{\ell,\Sigma}}$$

requires $0 \ll \epsilon_{\Sigma}$

3 The $14 = (1, 1) \oplus (2, 2) \oplus (3, 3)$ of SO(5) makes possible to unify all the RH leptons in only one multiplet!

$$\mathcal{L} \supset rac{\lambda_L^{\ell}}{\Lambda^{\gamma_{\ell}}} \bar{\ell}_L \mathcal{O}_{\ell} + rac{\lambda_R}{\Lambda^{\gamma_R}} \bar{\Psi}_R \mathcal{O}_R - rac{1}{2} \mathcal{M}_{\Sigma} \mathsf{Tr} \left(\bar{\Sigma}_R^c \Sigma_R
ight) + \mathsf{h.c.}$$

with $\Psi_R \supset e_R, \Sigma_R, \quad \mathcal{O}_{\ell} \sim \mathbf{5}$ and $\mathcal{O}_R \sim \mathbf{14}$

LIFTING THE TOP PARTNERS

This is really interesting since

- Since the contribution to the Higgs quartic from the 14 arises at $\mathcal{O}(\lambda_R^2/g_*^2)$, moderate values of λ_R can have an impact
- The three charged lepton RH fields will contribute to the potential

VIOLATION OF LFU

Since

$$\mathcal{M}_{e} \sim \mathit{v}\epsilon_{\ell}$$
 and $(\mathcal{M}_{\nu})_{\mathsf{light}} \sim \mathit{v}^{2}\epsilon_{\ell}^{2}\epsilon_{R}^{2}\mathcal{M}_{\Sigma}^{-1},$

having hierarchical charged lepton masses and anarchical neutrino masses leads to

 $0 \ll \epsilon_R^\tau \ll \epsilon_R^\mu \ll \epsilon_R^e$

and to a violation of LFU

THE CASE FOR RK

From the NP point of view,

$$R_{\mathcal{K}^{(*)}}|_{q^2 \in [1.1,6] \, \mathrm{GeV}^2} = \left. \frac{\Gamma(\bar{B} \to \bar{\mathcal{K}}^{(*)} \mu^+ \mu^-)}{\Gamma(\bar{B} \to \bar{\mathcal{K}}^{(*)} e^+ e^-)} \right|_{q^2 \in [1.1,6] \, \mathrm{GeV}^2}$$

stands out for several reasons

1 It is a very clean observable!

- Perturbative and non-perturbative QCD contributions cancel
- $\log(m_\ell)$ enhanced QED corrections are at the $\mathcal{O}(1\%)$ level BORDONE. ISIDORI, PATTORI, 16
- 2 It is a loop level effect in the SM
- It probes a somehow fundamental feature of the SM: lepton flavor universality!

VIOLATION OF LFU

VIOLATION OF LFU

EWPD

One of the biggest tensions arises from EWPD on four-fermion interactions

$$(e_R \gamma_\mu e_R)(e_R \gamma^\mu e_R) \sim \frac{g_*^2}{m_*^2} (\epsilon_{e_R})^4$$

WHAT ABOUT LFV?

In principle, one expects to generate dangerous FCNCs leading to extremely constrained lepton flavor violating processes

 $\mu \rightarrow e\gamma, \quad \mu \rightarrow 3e, \quad \mu - e \operatorname{conv}, \quad \tau \rightarrow \mu\gamma, \quad \dots$

Some of them are an issue even for elementary leptons!

BENEKE, MOCH, ROHRWILD, '15

We would like to have a global flavor symmetry in the Composite Sector \iff gauge symmetry in the bulk and the IR brane

5DMFV: FITZPATRICK, PEREZ, RANDALL, 07 , PEREZ, RANDALL, 08 , CSAKI, PEREZ, SURUJON, WEILER, 09

We would like to have a global flavor symmetry in the Composite Sector \iff gauge symmetry in the bulk and the IR brane

5DMFV: FITZPATRICK, PEREZ, RANDALL, 07 , PEREZ, RANDALL, 08 , CSAKI, PEREZ, SURUJON, WEILER, 09

Since we only have two 5D multiplets: $\zeta_{\ell L} \sim 5$ and $\zeta_{\ell R} \sim 14$, we make them triplets of $G_F = SU(3)_L \times SU(3)_R$

$$\zeta_L \sim (\mathbf{3}, \mathbf{1}) \qquad \zeta_R \sim (\mathbf{1}, \mathbf{3})$$

We can then assume that all the breaking of G_F comes from one spurion

 $\mathcal{Y} \sim (\mathbf{3}, \bar{\mathbf{3}})$

such that

$$c_L \equiv M_L R \sim \mathbf{1} + \mathcal{Y} \mathcal{Y}^{\dagger} \qquad c_R \equiv M_R R \sim \mathbf{1} + \mathcal{Y}^{\dagger} \mathcal{Y}$$

and

$$m_S \sim \mathcal{Y} \qquad m_B \sim \mathcal{Y}$$

We can then assume that all the breaking of G_F comes from one spurion

 $\mathcal{Y} \sim (\mathbf{3}, \bar{\mathbf{3}})$

such that

$$c_L \equiv M_L R \sim \mathbf{1} + \mathcal{Y} \mathcal{Y}^{\dagger} \qquad c_R \equiv M_R R \sim \mathbf{1} + \mathcal{Y}^{\dagger} \mathcal{Y}$$

and

$$m_S \sim \mathcal{Y}$$
 $m_B \sim \mathcal{Y}$

By unifying all RH fields we sit in the 'alignment' limit of 5DMFV

We can then assume that all the breaking of G_F comes from one spurion

 $\mathcal{Y} \sim (\mathbf{3}, \mathbf{ar{3}})$

such that

$$c_L \equiv M_L R \sim \mathbf{1} + \mathcal{Y} \mathcal{Y}^\dagger \qquad c_R \equiv M_R R \sim \mathbf{1} + \mathcal{Y}^\dagger \mathcal{Y}$$

and

$$m_S \sim \mathcal{Y} \qquad m_B \sim \mathcal{Y}$$

- By unifying all RH fields we sit in the 'alignment' limit of 5DMFV
- Then, all the flavor mixing comes via the Majorana masses!

COMPOSITE DARK MATTER

THE QUESTION OF DM

In order to have a DM candidate one needs to go beyond the minimal model

GRIPAIOS.POMAROL.RIVA.SERRA. '09. MRAZEK.POMAROL.RATTAZZI.REDI.SERRA. '11. FRIGERIO.POMAROL.RIVA URBANO. '12. BARNARD.GHETHETTA.RAY. '14. CHALA NARDINI.SOBOLEV. '16. ..

• One uses the fact that for a symmetric coset, $[X^a, X^b] = i f_{abk} T^k$ and therefore, if $U = \exp(i \Pi^a X^a / f)$ and $-i U^{-1} \partial_\mu U = d^a_\mu X^a + E^i_\mu T^i$,

$$\begin{aligned} d_{\mu} &= \frac{1}{f} \partial_{\mu} \Pi - \frac{i}{2f^2} \left[\Pi, \partial_{\mu} \Pi \right]_X - \frac{1}{6f^3} \left[\Pi, \left[\Pi, \partial_{\mu} \Pi \right] \right]_X \\ &+ \frac{1}{24f^4} \left[\Pi, \left[\Pi, \left[\Pi, \partial_{\mu} \Pi \right] \right] \right]_X + \dots, \end{aligned}$$

and

$$\mathcal{L}_{\sigma} = \frac{1}{2} \mathbf{f}^{2} \operatorname{Tr} \left(\mathbf{d}_{\mu} \mathbf{d}^{\mu} \right) + \mathcal{O}(\partial^{4}) \sim 1 + \frac{1}{\mathbf{f}^{2}} + \frac{1}{\mathbf{f}^{4}} + \ldots + \mathcal{O}(\partial^{4})$$

THE QUESTION OF DM

In order to have a DM candidate one needs to go beyond the minimal model

GRIPAIOS.POMAROL.RIVA.SERRA. '09. MRAZEK.POMAROL.RATTAZZI.REDI.SERRA. '11. FRIGERIO.POMAROL.RIVA URBANO. '12. BARNARD.GHETHETTA.RAY. '14. CHALA NARDINI.SOBOLEV. '16. ..

• One uses the fact that for a symmetric coset, $[X^a, X^b] = i f_{abk} T^k$ and therefore, if $U = \exp(i \Pi^a X^a / f)$ and $-i U^{-1} \partial_\mu U = d^a_\mu X^a + E^i_\mu T^i$,

$$\begin{aligned} d_{\mu} &= \frac{1}{f} \partial_{\mu} \Pi - \frac{i}{2f^2} [\Pi, \partial_{\mu} \Pi]_{X} - \frac{1}{6f^3} [\Pi, [\Pi, \partial_{\mu} \Pi]]_{X} \\ &+ \frac{1}{24f^4} [\Pi, [\Pi, [\Pi, \partial_{\mu} \Pi]]]_{X} + \dots, \end{aligned}$$

and

$$\mathcal{L}_{\sigma} = \frac{1}{2} \mathbf{f}^{2} \operatorname{Tr} \left(\mathbf{d}_{\mu} \mathbf{d}^{\mu} \right) + \mathcal{O}(\partial^{4}) \sim 1 + \frac{1}{\mathbf{f}^{2}} + \frac{1}{\mathbf{f}^{4}} + \ldots + \mathcal{O}(\partial^{4})$$

THE QUESTION OF DM

 We can then promote the accidental Z₂ symmetry of Tr(d_µd^µ) to a symmetry of the strong sector under which some pNGBs will be odd

$$H \rightarrow H$$
 $\Phi \rightarrow -\Phi$

 One needs to be sure that this symmetry is respected by the fermion linear mixings λq
 Q
 and is therefore respected by the scalar potential

$$V(\Pi) \sim m_*^4 \frac{N_c}{16\pi^2} \left[\left(\frac{\lambda}{g_*}\right)^2 V_2(\Pi/f) + \left(\frac{\lambda}{g_*}\right)^4 V_4(\Pi/f) \right] + \dots$$

■ Then the lightest Z₂-odd scalar will be a DM candidate!

THE CASE OF SO7/G2 FIRST CONSIDERED IN 12106208

- It delivers a 7 of G_2 , that decomposes under $SU(2) imes SU(2) \subset G_2$ as

$$7 = (2, 2) \oplus (3, 1)$$

- Depending on which SU(2) is weakly gauged, it means that

$$\mathbf{7} = \mathbf{2}_{\pm 1/2} + \mathbf{3}_0$$
 or $\mathbf{7} = \mathbf{2}_{\pm 1/2} + \mathbf{1}_{\pm 1} + \mathbf{1}_0$

under the EW group

- If the \mathbb{Z}_2 is succesfully enforced it will provide a natural version of Higgs portal DM or the Inert Triplet Model
- The group is non-anomalous but $SO(7)/G_2$ is not symmetric!

Even though the coset is not symmetric, $f^2 {\rm Tr}(d_\mu d^\mu)$ only features even powers of 1/f

$$d_{\mu} = \frac{1}{f} \partial_{\mu} \Pi - \frac{i}{2f^2} [\Pi, \partial_{\mu} \Pi]_X - \frac{1}{6f^3} [\Pi, [\Pi, \partial_{\mu} \Pi]]_X + \frac{1}{24f^4} [\Pi, [\Pi, [\Pi, \partial_{\mu} \Pi]]]_X + \dots$$

We make

$$q_L \sim \mathbf{35} = \mathbf{1} \oplus \mathbf{7} \oplus \mathbf{27}, \quad t_R \sim \mathbf{1}$$

leading to

$$V(\Pi) pprox m_*^2 f^2 rac{N_c}{16\pi^2} y_t^2 \left[c_1 V_1(\Pi) + c_2 V_2(\Pi)
ight],$$

Even though the coset is not symmetric, $f^2 {\rm Tr}(d_\mu d^\mu)$ only features even powers of 1/f

$$d_{\mu} = \frac{1}{f} \partial_{\mu} \Pi + \frac{1}{f^{2}} g(\Pi/f) \left[\Pi, \partial_{\mu} \Pi\right]_{X} + \frac{1}{f^{3}} h(\Pi/f) \left[\Pi, \left[\Pi, \partial_{\mu} \Pi\right]\right]_{X}$$

We make

$$q_L \sim \mathbf{35} = \mathbf{1} \oplus \mathbf{7} \oplus \mathbf{27}, \quad t_R \sim \mathbf{1}$$

leading to

$$V(\Pi) \approx m_*^2 f^2 \frac{N_c}{16\pi^2} y_t^2 \left[c_1 V_1(\Pi) + c_2 V_2(\Pi) \right],$$

Even though the coset is not symmetric, $f^2 {\rm Tr}(d_\mu d^\mu)$ only features even powers of 1/f

$$d_{\mu} = \frac{1}{f} \underbrace{\partial_{\mu}\Pi + \frac{1}{f^{2}}g(\Pi/f)\left[\Pi, \partial_{\mu}\Pi\right]_{X}}_{\mathrm{Tr}=0} + \frac{1}{f^{3}}h(\Pi/f)\left[\Pi, [\Pi, \partial_{\mu}\Pi]\right]_{X}$$

We make

$$q_L \sim \mathbf{35} = \mathbf{1} \oplus \mathbf{7} \oplus \mathbf{27}, \quad t_R \sim \mathbf{1}$$

leading to

$$V(\Pi) \approx m_*^2 f^2 \frac{N_c}{16\pi^2} y_t^2 \left[c_1 V_1(\Pi) + c_2 V_2(\Pi) \right],$$

Even though the coset is not symmetric, $f^2 {\rm Tr}(d_\mu d^\mu)$ only features even powers of 1/f

$$d_{\mu} = \frac{1}{f} \partial_{\mu} \Pi + \frac{1}{f^2} g(\Pi/f) \left[\Pi, \partial_{\mu} \Pi \right]_{\chi} + \frac{1}{f^3} h(\Pi/f) \left[\Pi, [\Pi, \partial_{\mu} \Pi] \right]_{\chi}$$

We make

$$q_L \sim \mathbf{35} = \mathbf{1} \oplus \mathbf{7} \oplus \mathbf{27}, \quad t_R \sim \mathbf{1}$$

leading to

$$V(\Pi) \approx m_*^2 f^2 \frac{N_c}{16\pi^2} y_t^2 \left[c_1 V_1(\Pi) + c_2 V_2(\Pi) \right],$$

A NATURAL INERT TRIPLET MODEL

- We consider first the case where the additional pNGBs span a triplet
- At the renormalizable level

$$V(H,\Phi) = \mu_{H}^{2}|H|^{2} + \lambda_{H}|H|^{4} + \frac{1}{2}\mu_{\Phi}^{2}|\Phi|^{2} + \frac{1}{4}\lambda_{\Phi}|\Phi|^{4} + \lambda_{H\Phi}|H|^{2}|\Phi|^{2}$$

with ${\it H} \sim {f 2}_{1/2}$ and $\Phi \sim {f 3}_0$ and

μ_H^2	μ_{Φ}^2	λ_{Φ}	$\lambda_{H\Phi}$
$-v^2\lambda_H$	$\tfrac{2}{3}f^2\lambda_H\left(1-\tfrac{8}{3}\tfrac{v^2}{f^2}\right)$	$-rac{4}{9}\lambda_{H}\left(1-rac{8}{3}rac{v^{2}}{t^{2}} ight)$	$rac{5}{18}\lambda_{H}\left(1+rac{32}{15}rac{v^{2}}{t^{2}} ight)$

Extremely predictive, only one free parameter f !

•
$$\mu_{\Phi}^2>0$$
 as well as $m_{\Phi}^2=\mu_{\Phi}^2+\lambda_{H\Phi}v^2>0$ so $\langle\Phi
angle=0$

COANNIHILATIONS

• EW gauge bosons induce a radiative splitting between the neutral and the charged components

$$\Delta m_{\Phi} = g m_W \sin^2 \theta_W / 2 \sim 166 \,\mathrm{MeV}$$

• The coannihilation is dominated by gauge interactions

- Sommerfeld enhancement and bound state production are important! $gm_{\Phi}/m_W \gg 1$ CIRELLI STRUMIA TAMBURINI '07

RELIC ABUNDANCE RECAST OF 07064071

• There is a m_{Φ}^2 -suppressed tree-level contribution proportional to $\lambda_{H\Phi}$

$$\begin{array}{c} \eta \\ & & & \eta \\ & & & \eta \\ & & & & \eta \\ q \end{array} \xrightarrow{\eta} \sigma = \lambda_{H\Phi}^2 m_N^4 f_N^2 / (\pi m_h^4 m_{\Phi}^2), \quad f_N = \sum_q \langle N | \bar{q} q | N \rangle \approx 0.3 \\ & & & \eta \end{array}$$

• But there are also m_{Φ} -independent loop induced contributions

It has been computed in the heavy WIMP effective theory HILLSOLON. '13

$$\sigma(\eta \textit{N} \rightarrow \eta \textit{N})_{\rm HWET} = 1.3^{+0.4+0.4}_{-0.5-0.3} \times 10^{-2} \, {\rm zb}$$

COLLIDER SIGNATURES AND OTHER CONSTRAINTS

- EWPT: modification of hVV coupling $\Rightarrow f \gtrsim 900 \text{ GeV}$ 151108235
- Modification of Higgs production and decay

$$R_{\gamma} = \frac{\sigma(gg \to h) \times BR(h \to \gamma\gamma)}{\sigma_{\mathsf{SM}}(gg \to h) \times BR_{\mathsf{SM}}(h \to \gamma\gamma)} \sim 1 + \mathcal{O}\left(\frac{v^2}{f^2}\right) \Rightarrow f \gtrsim 800 \text{ GeV}$$

- Searches for dissapearing tracks: κ^+ has a decay length of a few cm

 $f\gtrsim 650~{
m GeV}$ Recast of an atlas 8 TeV analysis 13103675

Monojet searches are not competitive to the previous ones

THE SINGLET CASE

THE SCALAR POTENTIAL

The leading contribution to the scalar potential remains the same but there are subleading contributions

- Breaking the degeneracy of κ^+ and η (coming mostly from B_μ)
- Making κ^{\pm} decay into $t_L b_R$ (coming from the b_R)

RELIC ABUNDANCE

- Sommerfeld effects and bound state production no longer relevant
- $|{\cal H}|^2 (\partial_\mu \eta)^2/f^2$ dominates over $\lambda_{{\cal H}\Phi} |{\cal H}|^2 \eta^2$

THE SINGLET CASE

DIRECT DETECTION

- No $m_{\Phi}\text{-independent contribution but the bounds rescale differently INDIRECT DETECTION$
 - Now it is possible to accommodate the whole DM abundance

COLLIDER SEARCHES

Dissapearing tracks are no longer relevant

CONCLUSIONS

- In CHMs, the absence of top partners can be translated into LFU!
- Therefore, $R_{\rm K} < 1$ and $R_{\rm K^*} < 1$ could be the first probe of the dynamics of EWSB
- Scalar WIMPs can naturally arise in non-minimal composite Higgs models.
- In particular, the coset $SO(7)/G_2$ leads to natural versions of Higgs portal DM and the Inert Triplet Model
- In general, NP could be probed first via non-resonant searches!

THANKS!

BACK - UP SLIDES

COMPOSITE RH NEUTRINOS

When the operator

$$\frac{\lambda_R}{\Lambda^{\gamma_R}}\bar{\Psi}_R\mathcal{O}_R$$

is relevant, i.e., $\gamma_{\it R} < 0$, a very large kinetic term is induced

$$\begin{split} \frac{\lambda_R^2}{\Lambda^{2\gamma_R}} \int \mathrm{d}^4 p \, \mathrm{d}^4 q \; \bar{\Psi}_R(-p) \langle \mathcal{O}_R(p) \bar{\mathcal{O}}_R(-q) \rangle \Psi_R(q) \\ &\sim \lambda_R^2 \left(\frac{\mu}{\Lambda}\right)^{2\gamma_R} \int \mathrm{d}^4 x \; \bar{\Psi}_R(x) i \not \partial \Psi_R(x) \end{split}$$

Canonically normalizing Ψ_R requires

$$\Psi_R \to \frac{1}{\lambda_R} \left(\frac{\mu}{\Lambda}\right)^{-\gamma_R} \Psi_R$$

and leads to $M_\Sigma o M_\Sigma \lambda_R^{-2} (\mu/\Lambda)^{-2\gamma_R}$ and

$$M_D \sim v \lambda_\ell \left(\frac{\mu}{\Lambda}\right)^{\gamma_L}$$

EWPD

For elementary fermions and a composite Higgs,

$$\hat{T} \sim [\hat{\alpha} - 2\hat{\beta} + \hat{\gamma}], \qquad \hat{S} \sim [-\hat{\beta} + \hat{\gamma}], \qquad W = Y \sim \hat{\gamma}$$

where

$\hat{T} \gg \hat{S} \gg W, Y$

We can make \hat{T} and $\delta Z \bar{\ell}_R \ell_R$ small enough thanks to our custodial setup AGASHE DELGADO MAY SUNDRUM. '03 AGASHE CONTINO DA ROLD POMAROL. '06