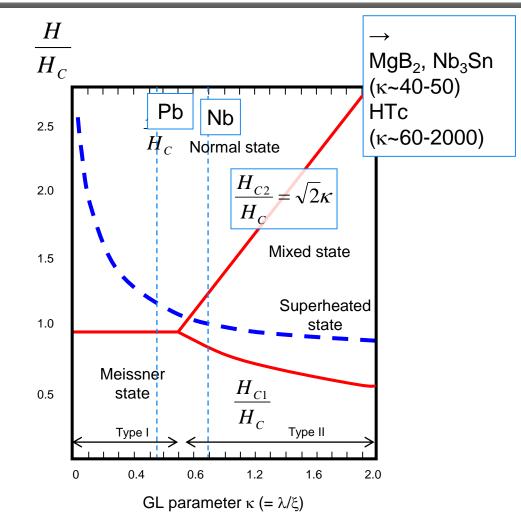

Task 12.2

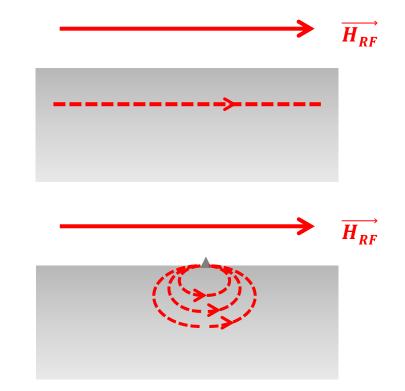

THIN FILMS INTRODUCTION

Ultimate field in SRF ?

- SC phase diagram
- SRF => Meissner state mandatory !
- Type I => only low T_c
- Nb highest H_{C1} (180 mT)
- « superheating field », favorized (?)
 by B// surface; metastable state

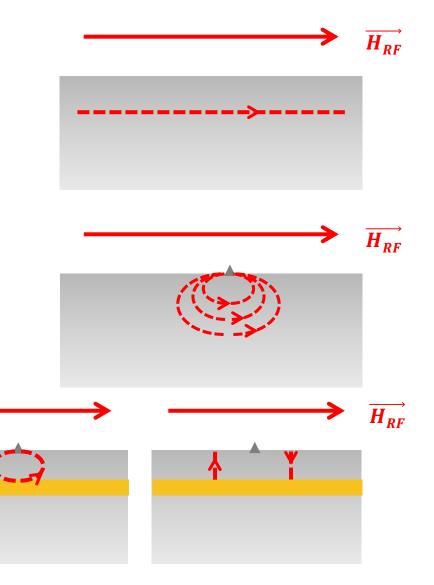
Vortex penetration

- Ideal case
- field // surface, => surface barrier (Bean Livingston)
- Vortex // surface start to enter @ H_{SH} > H_{C1}
- @ $H_{SH} > H_{C1}$ Vortex oscillate in RF \rightarrow dissipations
- Most favorable SC : Nb₃Sn, MgB2 (high T_c, high H_{SH})



 H_{RF}

Vortex penetration


- Ideal case
- Field // surface, => surface barrier (Bean Livingston)
- Vortex // surface start to enter @ H_{SH} > H_{C1}
- − @ H_{SH} > H_{C1} Vortex oscillate in RF → dissipations
- Most favorable SC : Nb_3Sn , MgB_2 (high T_C , high H_{SH})
- Defect at surface
- Early vortex penetration (bundle) @ H_{C1} (or less !)
- Formation of current loops
- Avalanche
- Oscillations in RF => dissipations
- What kind of defects do we fear ???

Vortex penetration

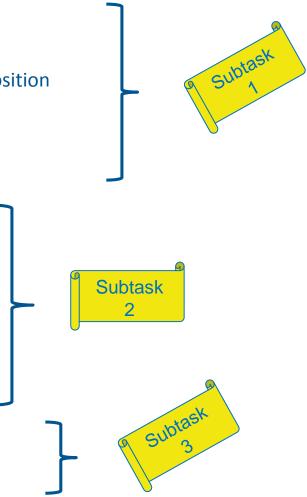
- Ideal case
- Field // surface, => surface barrier (Bean Livingston)
- Vortex // surface start to enter @ H_{SH} > H_{C1}
- − @ H_{SH} > H_{C1} Vortex oscillate in RF → dissipations
- Most favorable SC : Nb₃Sn, MgB₂ (high T_c, high H_{SH})
- Defect at surface
- Early vortex penetration (bundle) @ HC1 (or less ?)
- Formation of current loops
- Avalanche
- Oscillations in RF => dissipations
- What kind of defects do we fear ???
 - Dielectric layer
- Small \perp vortex (short -> low dissipation)
- Quickly coalesce (w. RF)
- Blocks avalanche penetration
- => Multilayer concept for RF application
- Most favorable SC : Nb₃Sn, MgB₂, NbN...

Structure of the task 12.2

Niobium on copper (µm)

- After ~ 20 years stagnation : new revolutionary deposition techniques (HPIMS)
- Great expectations in cost reduction
- No improved performances/ bulk Nb

Higher Tc material (µm)


- Based on superheating model.
- Higher field and lower Q0 expected

Higher Tc material (nm), multilayer

- Based on trapped vortices model (Gurevich)
- Higher field and lower Q0 expected
- Recent experimental evidences

Specific characterization tools needed

Better understanding of SRF physics needed

Structure of the session

- Introduction (CZA)
- Thin film deposition
- HiPIMS coatings for SRF applications , G. Rosaz, CERN
- A15 thin films development for SRF applications, K. ILyina
- Multilyers deposition by ALD, Grenoble INP (presented by CZA)
- Thin film characterization
- RF characterization of superconducting samples, S. Eckert, HZB
- Multilayer characterized by magnetometry, M. Aburas, CEA Saclay

Task 12.2 Conclusion

- Very challenging upstream, discovery, R&D
- Many difficulties to (propose and) follow a realistic schedule
- In particular hiring qualified student/post docs = important source of delays
- The foreseen program and the collaborations started will be pursued beyond the end of EUCARD2
- Although we did not manage to complete the full program:
- Many encouraging results
- Strong hope to complete the program in a close future
 - Future :
- EUCARD3 (ARIES) covers only a little of the work to be done
- Other funding sources are mandatory