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Introduction to the European XFEL
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Introduction to Wakefields

When beam transverses a cavity, wakefields
are excited. These fields can be decomposed
into different eigenmodes etc.

R. Wanzenberg, TESLA 2001-33, 2001. 4
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Higher Order Modes
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TESLA Cavity HOM Spectrum
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Beam Phase Measurement

Monopole Modes

WHHNN ©

15 March 2017



Field Control inside a Cavity

* FEL operation requires high stability of RF amplitude and
phase. The requirements are derived from the beam
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RF;,

How to Determine the Beam Phase?
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@;s from HOMs can be used to define the
beam arrival time t; and the phase relative to
this time for the 1.3 GHz signal can be

calculated.




A Single Chain Coupled Circuit Model

* Asingle chain of coupled parallel LC circuit is used to facilitate the
beam phase monitor development.
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Beam driven Circuit Model
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Resolution Study with Circuit Model

Vary the sampling frequency, while keeping other parameters constant

Vary the noise level, while keeping other parameters constant

By comparing phases calculated from two HOM couplers, resolution can be

estimated.
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The resolution clearly depends
exponentially on the noise present in the
system.

The resolution also depends on the
sampling frequency.

In order to meet the 0.01 degree
requirement, the SNR should be > 35 dB

L. Shi et al., IPAC2016, pp686 12



Experimental Setup

TESLA Cavity

HOM Coupler

‘I/ ~60 m RF cable
Splitter

2340-2530 MHz

1250-1350 MHz

Band Pass Filter

Band Pass Filter

Combiner

i l TCP/IP Client
VX11-LAN link

]

Oscilloscope

20GS/s, 6 GHz

— Data link

— Command link

— Clock link

DOOCS Control System

l

TCP/IP Server

]

(— =\

HOM signals are available
from HOM Patch panel.

A fast scope (TDS6604B)
with 20 GS/s, 6 GHz
bandwidth measures from
two HOM signals.

A 10 Hz external clock is
used to synchronize the
measurement.

The data from DOOCS and
from scope are combined at
TCP/IP Client

Each triggered event takes
~ 20s

13



Amplitude (volt)

Estimation of Noise with SVD

—HOM1
—HOM2

Time (us)

D =USVT
S contains the singular values associated
with the signal

Top 24 singular values are used to
reconstruct the signal. The rest is regarded
as noise.

The noise level is approximately 8 mV RMS.

SNR is ~20 dB for HOM1 and ~10 dB for
HOM?2.
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Phase Calculated (degree)
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Resolution versus Charge
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Beam phase is varied at 0, -5, and 5 degree.
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The beam charge was varied from 0.1 to
1 nC with a step of 0.1 nC.

The simulation data was scaled with
measurements.
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HOM Phase (degree)

Comparison with Probe Phase

VS phase - HOM Phase

VS Phase (degree)

Probe phase - HOM Phase
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* The phase was changed from -10 to 10 degree with a step of 1 degree.

Up to a calibration offset, the probe phase agrees with the HOM phase.

Note that the measurement system is not fully synchronized.

16



Resolution (degree)

Resolution Limit Estimation

Simulation data with 0.5 nC and 20 GS/s
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Minimal detectable thermal noise:
Uy, = %ka = 0.0129 eV @ 300K;

Energy deposited in a monopole mode:
kg? = 9.4 - 10! eV with 0.5 nC

By assuming 0.5 power coupling, the SNR
is approximately 136 dB, which suggests ~
1078 degree resolution.

By scaling the power of the simulation
signal based on measurements, the
difference between simulation and
measurement is 0.05 degree.

17



Cavity Misalignment Measurement

Dipole Modes

18
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Cavity Misalignment Measurements
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Wakefields for various Beam Trajectories
(a) Offset '

The amplitude depends linearly on
the offsety.

The amplitude depends linearly on a
and square of bunch length

The amplitude depends linearly on 6

* Scenario (c) can play an important role in beam position determination.

* For scenario (a) and (c), a beam with 1 mrad angle excites a signal with the same
amplitude as with ~200 um offset.

* The maximum allowed angle (limited by beam pipe diameter) is ~ 7 mrad. The beam angle
is normally a few hundred prad.

20



HOM-based Beam Diagnostics

Electronics

21



Electronics for 1.3 GHz Cavities

1.3 GHz

129041310 MHz
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* The electronics are compact and can be used for beam phase and beam position
measurements. |
* They fully comply with MicroTCA.4 standard.

Fast digitizer
22
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Electronics for 3.9 GHz Cavities
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Harmonic Accelerating Cavities at the XFEL, T. Warmsat, IBIC14, pp337



Possible Topologies of Final System

Process at the front end and transmit the results over long distance.

+ Less influence from

Accelerator Control the intermediate units

Process unit
Module Room

- Radiation protection

Vicinity of the module

Transmit the signal over long distance and process the signal.

Accelerator Brocess unit Control + No need for radiation
protection.

Module Room

Longer cable

to different site - Signal integrity issue

24



Summary

e Beam Phase Measurements

We routinely obtain 0.1° resolution with a scope setup. Simulations predict
that at least 35 dB SNR is required to achieve the 0.01 ° resolution.

Measurements are consistent with prediction from simulation and other
phase monitors.

= Electronics are under development.

* Cavity Position Measurements

= The relative cavity misalignment can be measured by searching for the
trajectory that minimizes the dipole mode power.

= |tis not trivial to measure the beam angle effects.

25



Thank you for your attention!



Cavity Misalignment Measurements
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