DE LA RECHERCHE À L'INDUSTRIE

Screening Power of NbN Nanometric Layers

4th Annual Review Meeting at NCBJ, Poland, 14-15 March 2017

Muhammad Aburas

91191 Gif-sur-Yvette, France

www.cea.fr

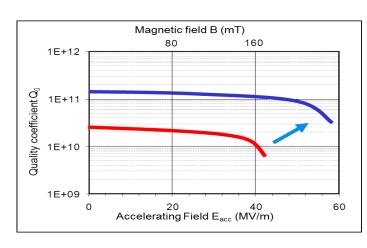
Why multilayers superconductors for SRF cavity?

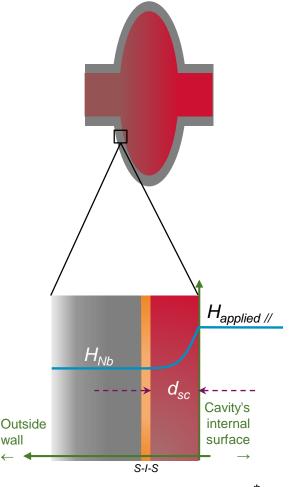
Outline

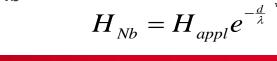
Nb – Insulator – NbN model

Hc₁ Measurement, a Local Magnetometer

- Why a local magnetometer is necessary ?
- How this magnetometer works ?
- Behind every success, a lot of failures


Screening Power of NbN Layer

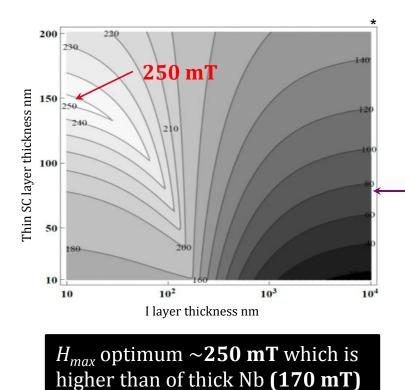

- Last results and discussion
- Conclusion and Perspectives

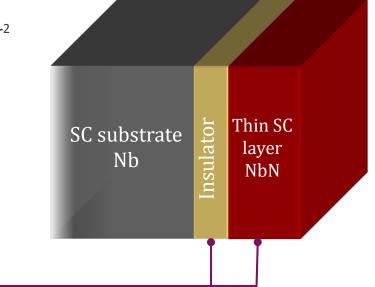

Why multilayers superconductors for SRF cavity ?

- Overcome Nb monopoly by higher Hc_1 superconductors multilayers¹
- ML coating of Nb cavity by insulator layer and SC layer ($d_{sc} < \lambda$)
 - Higher Hc₁ => higher accelerating field in the cavity
 - Magnetic screening of the Nb cavity
 - Enhancement of Hc_1 by higher T_c SC thin films $T_c > T_c^{Nb}$
 - $\blacksquare \qquad R_s^{NbN} \approx \frac{1}{10} R_s^{Nb} \qquad = > \qquad Q_0^{multi} >> Q_0^{Nb}$

- Several superconductors are proposed :NbN, MgB₂, Nb₃Sn or dirty Nb
- In this work, we will study the NbN coating effect on H_{c1}

¹A. Gurevich, Applied Physics Letters 88,012511 (2006).


DE LA RECHERCHE À L'INDUSTR


Introduction

Nb – Insulator – NbN model

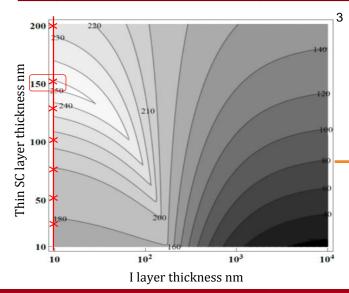
- □ Nb I NbN with NbN ($T_c \sim 15$ K, $\lambda = 200$ nm)
- Increasing the high-field performance by a NbN overlayer²
- Is there an optimum thickness of NbN layer which maximizes the breakdown field ?

Predictions

- T. Kubo (2014)³ ~140 nm
- A. Gurevich (2015)⁴ ~160 nm

Our task

 Verifying the optimum thickness *d* for maximum *H_{max}* which exceeds the superheating fields of both the layer and the substrate !



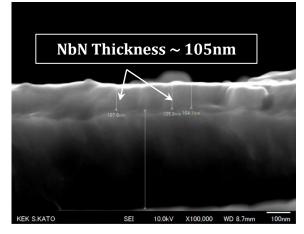
Nb – Insulator – NbN model

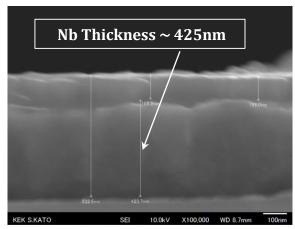
Series of Nb - MgO - NbN samples (*Collaboration of CEA-Inac Grenoble*)

N°	Nb (nm)	MgO (nm)	NbN (nm)
1	500	10	25
2	500	10	50
3	500	10	75
4	500	10	100
5	500	10	125
6	500	10	150
7	500	10	200

Calculations³ obtained by the assumption that:

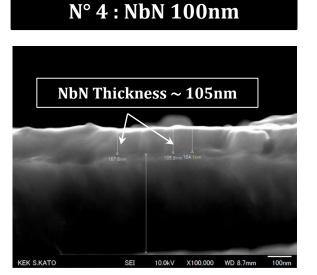
- SC thin layer : NbN
 - B_c (NbN) = 230 mT and λ (NbN) = 200 nm
- SC thick layer : Clean Nb

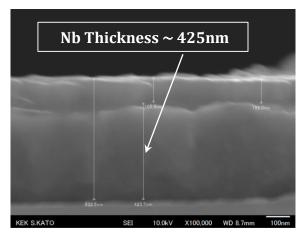

 B_{max} (Nb) = B_{c1} (Nb) = 170 mT and λ (Nb) = 40 nm



Nb – Insulator – NbN model

- Samples characterization (*Collaboration of KEK Japan*)
- SEM-EDX Analysis
- Depth profile by XPS
 - Thicknesses of NbN are largely dependent on their position on the samples
 - Generally, Thickness of NbN are thinner than the targeted thicknesses
 - The thickness of MgO is approximately uniform
- Superconductivity of samples by PPMS

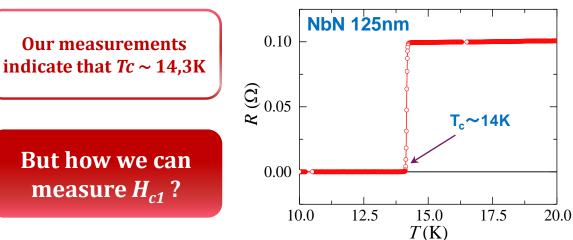



Nb – Insulator – NbN model

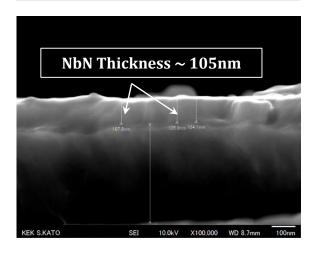
- Samples characterization (*Collaboration of KEK Japan*)
- SEM-EDX Analysis
- Depth profile by XPS

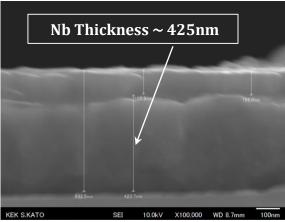
Improvement of NbN deposition is

- Generequired or use alternative target techniques (ALD, CVD, ...)
- Superconductivity of samples by PPMS

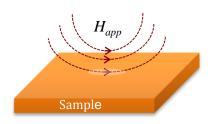

Nb – Insulator – NbN model

- Samples characterization (*Collaboration of KEK Japan*)
- SEM-EDX Analysis
- Depth profile by XPS

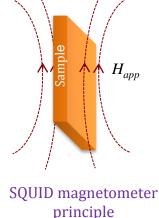

Improvement of NbN deposition is


Generequired or use alternative target techniques (ALD, CVD, ...)

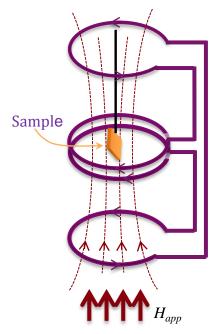
Superconductivity of samples by PPMS


DE LA RECHERCHE À L'INDUSTRI

H_{c1} Measurement, a Local Magnetometer



Why a local magnetometer is necessary?


- Conventional Magnetometer (SQUID) gives ambiguous results:
- Uniform field around the sample
- Orientation, edge and shape effects
- Demagnetization effects
- Samples exhibit a strong transverse moment
- Exact local field configuration not known
- Development of local magnetometer necessary:
- Magnet size << sample size (infinite plane approx.)
- Measurement of H_{c1} on sample without edge/demagnetization effect
- Explorer new SCs multilayers at higher fields

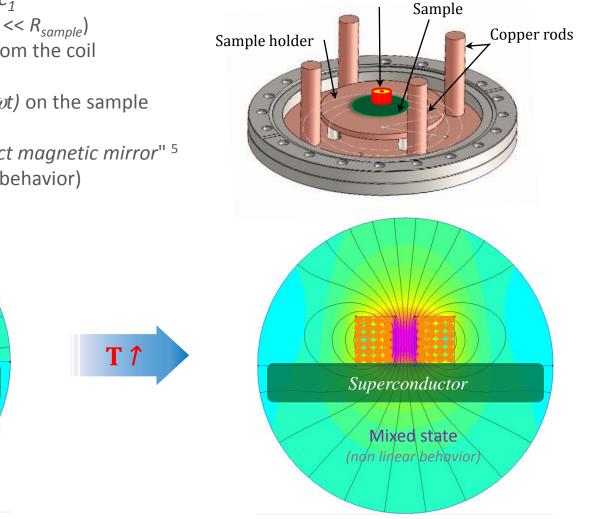
Local magnetometer principle

DE LA RECHERCHE À L'INDUSTRI

H_{c1} Measurement, a Local Magnetometer

How this magnetometer works?

- \Box 3rd harmonic measurement of Hc_1
 - Excitation / Detection coil (R_{coil} << R_{sample})
 - Field decreases quickly away from the coil
 - ZFC of the Sample
 - $I_0 cos(\omega t)$ in the coil => $b_0 cos(\omega t)$ on the sample
 - Slow temperature rise

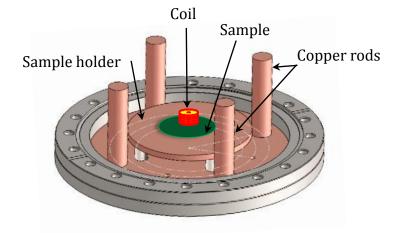

Coil multiturns

Superconductor

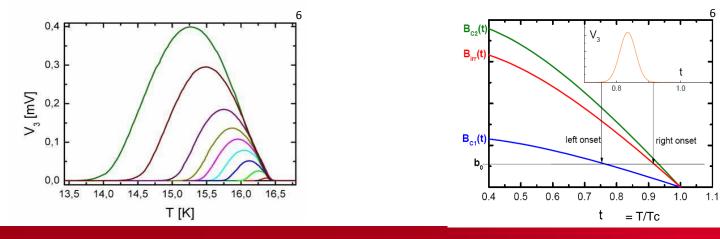
Meissner state

(Magnetic mirror)

- Meissner state : sample "perfect magnetic mirror" ⁵
- At Hc₁, V₃ appears (non linear behavior)


Coil

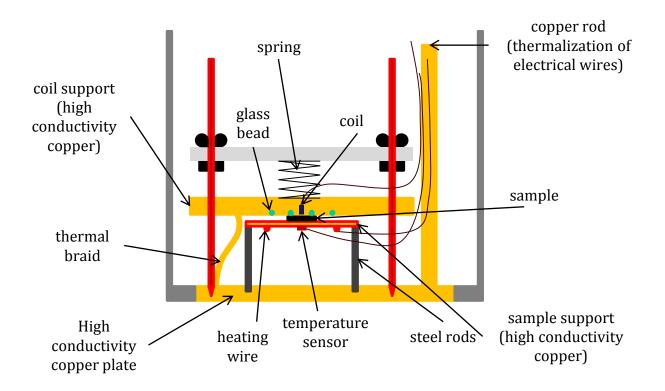
H_{c1} Measurement, a Local Magnetometer



How this magnetometer works?

- \Box 3rd harmonic measurement of Hc_1
 - Excitation / Detection coil (R_{coil} << R_{sample})
 - Field decreases quickly away from the coil
 - ZFC of the Sample
 - $I_0 cos(\omega t)$ in the coil => $b_0 cos(\omega t)$ on the sample
 - Slow temperature rise
 - Meissner state : sample "perfect magnetic mirror" 5
 - At Hc₁, V₃ appears (non linear behavior)

Building a setup ~operating conditions for SRF (2K-20K; H >> 150 mT) : (tbc existing facilities⁶ : > 4,5 K or 70 K and B_{max} ~15-20 mT)

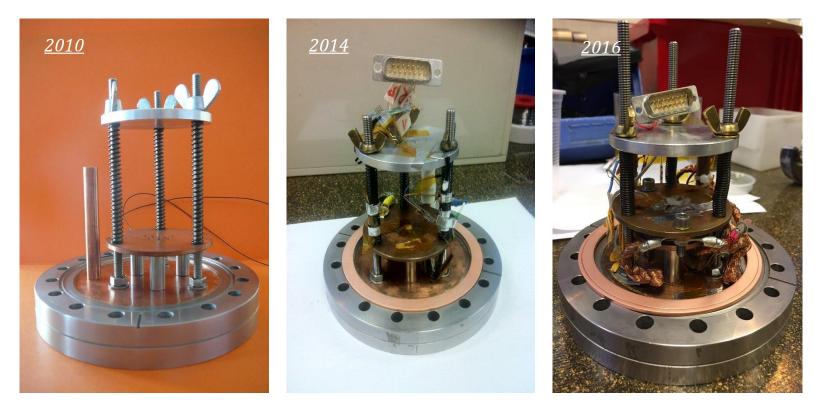


⁵ J. H. Claassen, et al. Rev. Sci. Instrum, Vol. 62, 4 (1991). ⁶M. Aurino, et al., Journal of Applied Physics, 98. 123901 (2005).

H_{c1} Measurement, a Local Magnetometer *EUCARD*²

How this magnetometer works ?

Works have been beginning in 2010



Schematic of local magnetometer

H_{c1} Measurement, a Local Magnetometer

How this magnetometer works ?

Works have been beginning in 2010

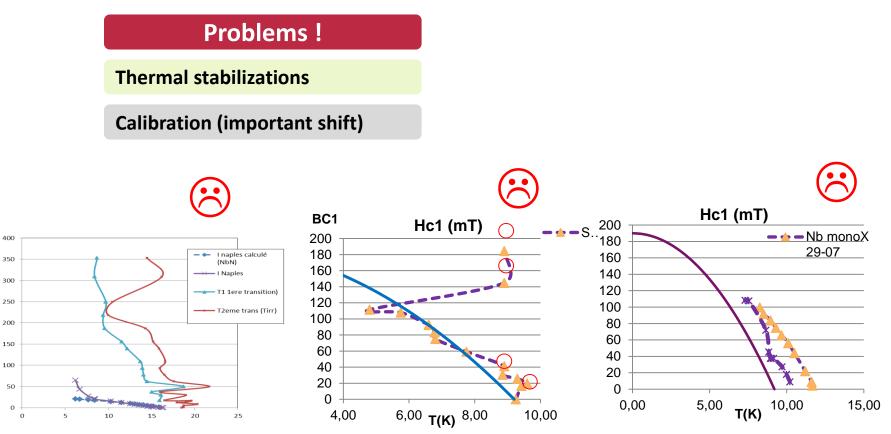
Experimental setup

EUCARD²

H_{c1} Measurement, a Local Magnetometer *Eucard*²

How this magnetometer works?

Works have been beginning in 2010


Insert

Cryostat

Measurement devices

Behind every success, a lot of failures

Many efforts were achieved to overcome some difficulties

Calibration with a monocrystalline Nb


EUCARD²

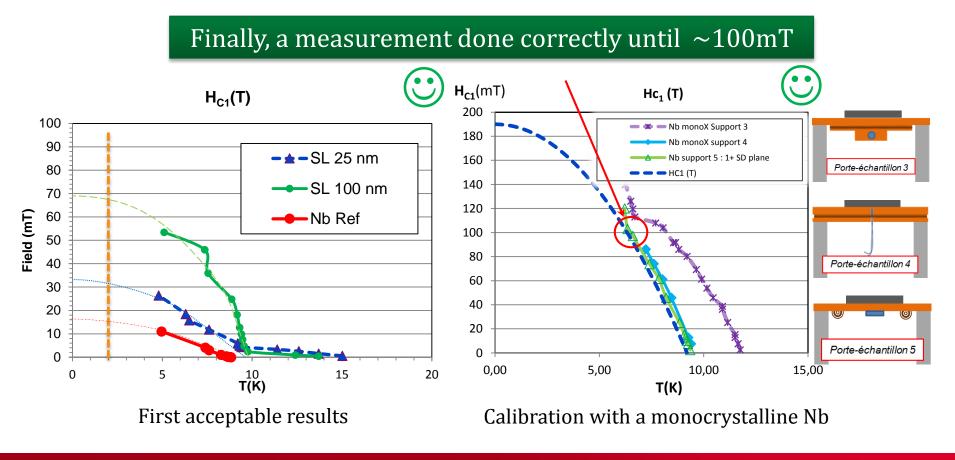
Behind every success, a lot of failures

Many efforts were achieved to overcome some difficulties

Problems !	Modifications
Thermal stabilizations	Add some copper braids
Calibration (important shift)	

Behind every success, a lot of failures

Many efforts were achieved to overcome some difficulties


Problems !	Modifications
Thermal stabilizations	Add some copper braids
Calibration (important shift)	The sample holder

H_{c1} Measurement, a Local Magnetometer

Behind every success, a lot of failures

- Many efforts were achieved to overcome some difficulties
- End of 2016, first successful measurement

EUCARD²

- Nb 560nm

NbN 25nm

NbN 75nm NbN 100nm

NbN 125nm

NbN 150nm

16

- NbN 200nm

14

10

T (K)

12

6

8

Last results and discussion

Series of Nb - MgO - NbN samples

100

90

80

70

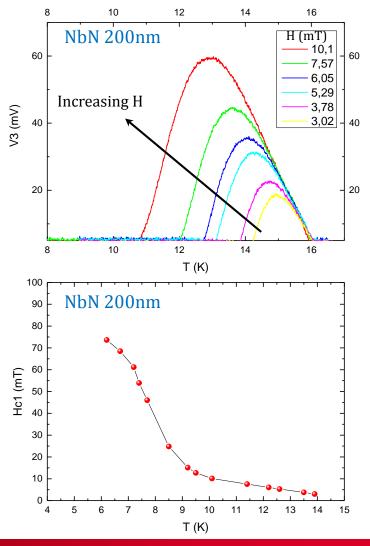
60

50

40

30

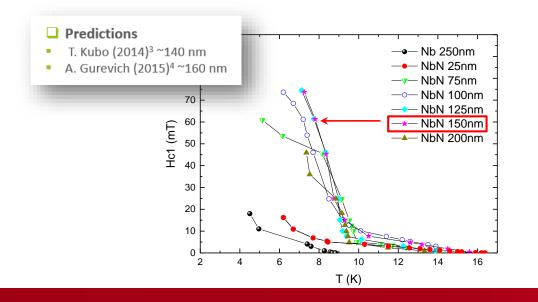
20

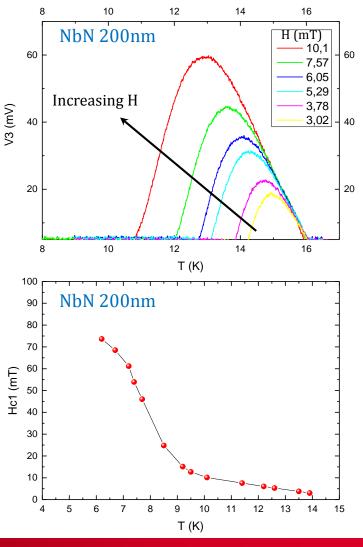

10

0

2

Hc1 (mT)


- January 2017, beginning of measurements
- Generally, 1 sample/week
 (Mounting + cooling + manipulation + warming up)
- Accepted results
- Thermal stabilization
- Correct transitions



Last results and discussion

- Series of Nb MgO NbN samples
- January 2017, beginning of measurements
- Generally, 1 sample/week
 (Mounting + cooling + manipulation + warming up)
- Accepted results
- Thermal stabilization
- Correct transitions
- Good agreement with the predictions of Kubo Gurevich

0,00012

0.00010

0.00008

0,00004

0,00002

200

150

100

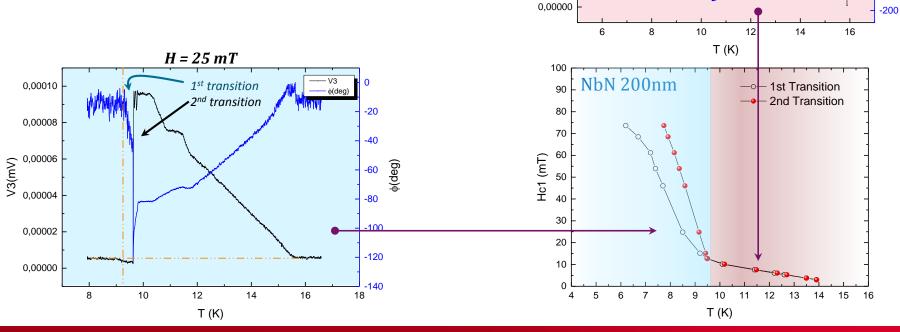
50

-50

-100

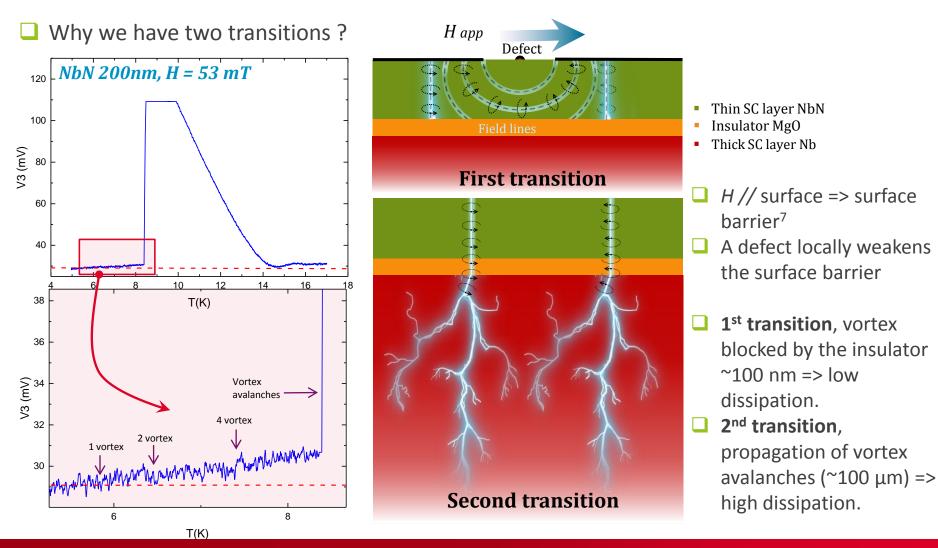
-150

o ¢(deg)


√V3 ∳(deg)

H = 7 mT

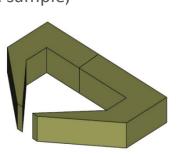
Last results and discussion

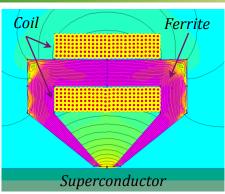

- \Box Determination of H_{c1}
- Low field => one transition
- High field => two transitions
- 1st transition with low dissipation
- 2nd transition very clear with high dissipation

Why we have two transitions ?

Last results and discussion

Conclusion and Perspectives




Conclusion

- A local magnetometer has proven to be effective at measuring vortex penetration in conditions close to cavities operating condition.
- We have shown a very promising behavior of NbN layers
- S-I-S multilayers provide best protection of cavities against local penetration of vortices
- \Box Overcome Nb monopoly by higher H_{c1} superconductors multilayers is possible
- Sample gives results close to theory : optimization can be done theoretically
- Deposition methods inside cavities needs to be developed

Perspectives

- Enhancement of the maximum magnetic field applied on the sample, we hope to reach > 250 mT by:
- Replacement the coil by a ferrite core inductor
- Novel thermal design of the experimental setup
- Study other superconductors multilayers at higher fields.

Thank you for your attention

Aurelien FOUR

Special thanks go to everyone participated in this work