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Introduction Cevcaro?

Why multilayers superconductors for SRF cavity ?

J Overcome Nb monopoly by higher Hc, superconductors multilayers?
J ML coating of Nb cavity by insulator layer and SC layer (d,. < )

Higher Hc, => higher accelerating field in the cavity

Magnetic screening of the Nb cavity

Enhancement of Hc, by higher T_SC thin films T_> T b
[ Rng%% Rgb => Qomulti >> QONb

Magnetic field B (mT)
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) Several superconductors are proposed :NbN, MgB,, Nb;Sn or dirty Nb N -
' In this work, we will study the NbN coating effect on H_, H Nb — H app|e *

IA. Gurevich, Applied Physics Letters 88,012511 (2006).
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Nb — Insulator — NbN model

Nb — I — NbN with NbN (T, ~15K, A = 200 nm)

Increasing the high-field performance by a NbN overlayer?
Is there an optimum thickness of NbN layer which
maximizes the breakdown field ?

Thin SC
layer
NbN

SC substrate
Nb

Thin SC layer thickness nm

Predictions

T. Kubo (2014)3 ~140 nm
! A. Gurevich (2015)* ~160 nm

[ layer thickness nm Our taSk
H_optimum ~250 mT which is Verifying the optimum thickness d.for maximum
higher than of thick Nb (170 mT) H..., Which exceeds the superheating fields of

both the layer and the substrate !

2C.Z. Antoine, et al. APL 102, 102603 (2013). 3T. Kubo et al, Appl. Phys. Lett. 104, 032603 (2014). “A. Gurevich, AIP Advances 5, 017112 (2015).  2/15
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Nb — Insulator — NbN model

Series of Nb - MgO - NbN samples (Collaboration of CEA-Inac Grenoble)

N° Nb (nm) MgO (nm) NbN (nm)
1 500 10 25
2 500 10 50
3 500 10 75
4 500 10 100
5 500 10 125
6 500 10 150
7 500 10 200

NbN coating by Magnetron Sputtering

Calculations? obtained by the assumption that:
SC thin layer : NbN
B.(NbN) =230 mT and A (NbN)=200nm
SC thick layer : Clean Nb
(Nb) =B_, (Nb) =170 mT and A (Nb)=40nm

Thin SC layer thickness nm

Bmax

10 10? 10° 10*

I layer thickness nm

3T. Kubo et al, Appl. Phys. Lett. 104, 032603 (2014).
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Nb — Insulator — NbN model
Samples characterization (Collaboration of KEK Japan) N° 4 : NbN 100nm
SEM-EDX Analysis :

Depth profile by XPS

C Thicknesses of NbN are largely dependent on their \
[
am

position on the samples
* Generally, Thickness of NbN are thinner than the
targeted thicknesses

* The thickness of MgO is approximately uniform
\_ /
Superconductivity of samples by PPMS TR TR T

Nb Thickness ~ 425nm
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Nb — Insulator — NbN model

Samples characterization (Collaboration of KEK Japan)
SEM-EDX Analysis
Depth profile by XPS

Improvement of NbN deposition is
required or use alternative
techniques (ALD, CVD, ... )

Superconductivity of samples by PPMS

N° 4 : NbN 100nm

NbN Thickness ~ 105nm

KEK SKATO

SEI 10.0kV. X100,000 WD 8.7mm

Nb Thickness ~ 425nm

100nm
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Nb — Insulator — NbN model

Samples characterization (Collaboration of KEK Japan)
SEM-EDX Analysis
Depth profile by XPS

Improvement of NbN deposition is
required or use alternative
techniques (ALD, CVD, ... )

Superconductivity of samples by PPMS

But how we can
measure H_, ?

N° 4 : NbN 100nm

NbN Thickness ~ 105nm

KEK SKATO

SEI 10.0kV. X100,000 WD 8.7mm

Nb Thickness ~ 425nm

100nm
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Why a local magnetometer is necessary ?

Conventional Magnetometer (SQUID) gives ambiguous results:
Uniform field around the sample

Orientation, edge and shape effects

Demagnetization effects

Samples exhibit a strong transverse moment

Exact local field configuration not known

Development of local magnetometer necessary:

Magnet size << sample size (infinite plane approx.)

Measurement of H_, on sample without edge/demagnetization effect
Explorer new SCs multilayers at higher fields

Sample

Local magnetometer SQUID magnetometer
principle principle M Hoy
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How this magnetometer works ?

3" harmonic measurement of Hc,
Excitation / Detection coil (R ,; << Ry;mpre)
Field decreases quickly away from the coil
ZFC of the Sample
I,cos (wt) in the coil => b,cos (wt) on the sample
Slow temperature rise
Meissner state : sample "perfect magnetic mirror" >
At Hc,, V; appears (non linear behavior)

& .

Superconductor

Meissner state
(Magnetic mirror)

5J. H. Claassen, et al. Rev. Sci. Instrum, Vol. 62, 4 (1991). M. Aurino, et al., Journal of Applied Physics, 98. 123901 (2005).



How this magnetometer works ?

(1 3@ harmonic measurement of Hc,

Excitation / Detection coil (R ,; << Ry;mpre)

Field decreases quickly away from the coil

ZFC of the Sample

I,cos (wt) in the coil => b,cos (wt) on the sample
Slow temperature rise

Meissner state : sample "perfect magnetic mirror" >
At Hc,, V; appears (non linear behavior)

Sample holder

Copper rods

e

) Building a setup ~operating conditions for SRF (2K-20K; H >> 150 mT) : (tbc existing

facilities® : >4,5Kor 70 Kand B,,,, ~15-20 mT)

04 F T T T T T LI BCZ(t)
B(t)
0’3 8 i i ‘.
J t
S' 0‘8 1,‘0
02| -
E
>f')
01k _ B.,(t) left onset right onset
b, 2
0,0 by ey e y— 1 ) 1 1 )
135 140 145 150 155 16,0 16,5 04 05 06 07 08 09 10

TIK]

5J. H. Claassen, et al. Rev. Sci. Instrum, Vol. 62, 4 (1991).

M. Aurino, et al., Journal of Applied Physics, 98. 123901 (2005).
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How this magnetometer works ?

Works have been beginning in 2010

copper rod

spring (thermalization of
electrical wires)
coil support
(high glass
conductivity bead
copper)
sample
thermal
braid
High ///////)7 . temperature Sﬁmpbsupmﬁt
conductivity hegUng sensor steel rods™ (high conductivity
wire Copper)
copper plate

Schematic of local magnetometer



Experimental setup
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How this magnetometer works ?

Works have been beginning in 2010

Cryostat Measurement devices

8/15
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Behind every success, a lot of failures

Many efforts were achieved to overcome some difficulties

Thermal stabilizations

Calibration (important shift)

® ®
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Calibration with a monocrystalline Nb
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Behind every success, a lot of failures

Many efforts were achieved to overcome some difficulties

Modifications

Thermal stabilizations Add some copper braids

Calibration (important shift)




C2A  H., Measurement, a Local Magnetometer sucaro’

Behind every success, a lot of failures

Many efforts were achieved to overcome some difficulties

Modifications

Thermal stabilizations Add some copper braids

Calibration (important shift) The sample holder

10/15
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Behind every success, a lot of failures

Many efforts were achieved to overcome some difficulties
End of 2016, first successful measurement

Finally, a measurement done correctly until ~100mT

He,(T) @ Hey(MT) \ Hc, (T) @

200
100 ] - e - @» ¥ @«» Nb monoX Support 3 *
90 E ! . 180 1 \\ e Nb monoX support 4
1 1 =d=S| 25 nm 160 A== Nb support 5 : 1+ SD plane - -
80 - SN ook
70 ) —e— S| 100 nm - 140 ‘-\\v
3 1 A
2 60 —o—Nb Ref = ‘ﬁv"
= g0 - | . 100 .
o ] ! \ \-\/g -
'E 40 - : 80 ‘ﬁ | Porte-échantilion 4 |
B I 60 %
30 - o
E i
10 - " 20 X
0 ! 0 : @ , & | Porte-échantillon’s |
0 5 10 15 20 0,00 5,00 10,00 15,00
T(K) T(K)
First acceptable results Calibration with a monocrystalline Nb
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Last results and discussion
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Last results and discussion
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Last results and discussion

Determination of H_, 000012 | S
Low field => one transition 0,00010 | F< 1
. . oy - 100
High field => two transitions 0.00005 | 1.
15t transition with low dissipation S 7 5
q . . . L . E 0,00006 | I o &
2"9 transition very clear with high dissipation 0 T
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Last results and discussion

] Why we have two transitions ? H app }
Defect
120 NBN 200nm, H = 53 mT | R
: . . , = Thin SC layer NbN

100 | 1 Field lines = Insulator MgO
— = Thick SC layer Nb
E 80 - -
S

ol | 1 H //surface => surface

barrier’
40 - ) A defect locally weakens
M_éfw """"" the surface barrier
4 : 8 10 — 12 14 : 16 8
s T(K) 1
1 15t transition, vortex

*r ] blocked by the insulator
Sal Vortex ] ~100 nm => low
< | avalanches > dissipation.
> g0

2 - “”‘il'/tex - ] 2" transition,

e propagation of vortex
30 —
____________________ i avalanches (~100 pm) =>
. . . Second transition high dissipation.

’B. Bean and J. D. Livingston, Phys. Rev. Lett. 12, 14 (1964).
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Conclusion

A local magnetometer has proven to be effective at measuring vortex penetration in conditions close to
cavities operating condition.

We have shown a very promising behavior of NbN layers
S-1-S multilayers provide best protection of cavities against local penetration of vortices
Overcome Nb monopoly by higher H_, superconductors multilayers is possible

Sample gives results close to theory : optimization can be done theoretically

Deposition methods inside cavities needs to be developed

Perspectives

Enhancement of the maximum magnetic field applied on the sample,
we hope to reach > 250 mT by:

Replacement the coil by a ferrite core inductor
Novel thermal design of the experimental setup

Study other superconductors multilayers at higher fields.
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