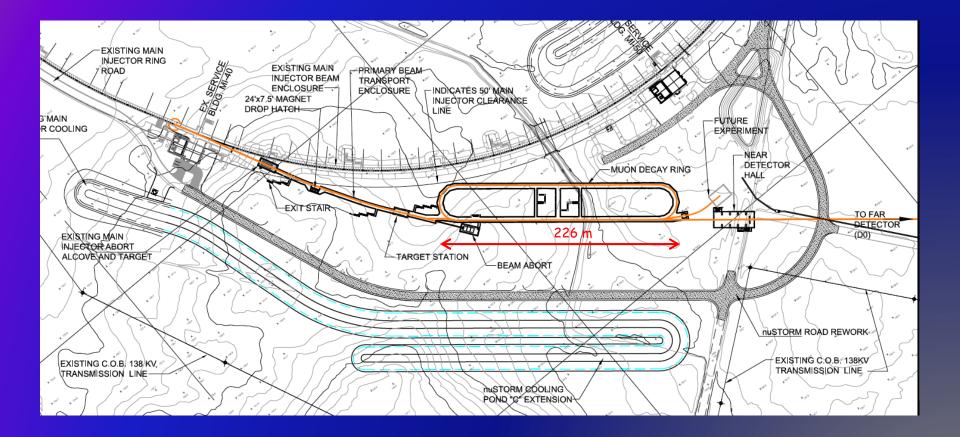


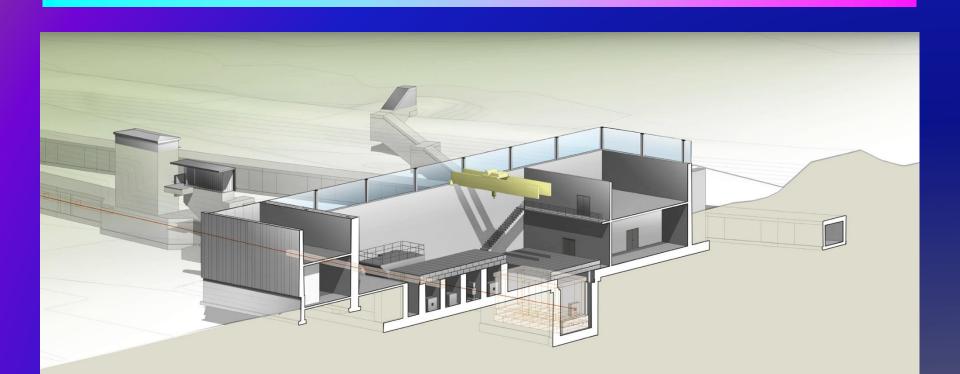
nuSTORM at FNAL: implementation

Plus some additional thoughts

Siting Plan


Funded siting study and delivered Project Definition Report

Alan Bross nuSTORM & the Physics Beyond Colliders Workshop February 16th, 2017


Site schematic

🛟 Fermilab

Target Station

At grade Based in NuMI design

Alan Bross nuSTORM & the Physics Beyond Colliders Workshop February 16th, 2017

Decay ring

Near detector hall

Straightforward design Sized to allow for multiple detectors

Far Detector Hall DO Assembly Building

On the next slide all costs are given in US accounting methodology

- 1. All labor (fully burdened) included
 - Including Scientific
- 2. All M&S with over heads applied
- 3. All project management

vSTORM

Costing model

Basis of Estimation Conventional facilities Project Definition Report Prepared by Fermilab Facilities Services Section (FESS) Cost estimates from AD for > Primary beam line > Target Station Cross-checks to LBNE Magnet Costs based on construction analysis for room temperature magnets and on Strauss & Green model for SC magnets (TD) With contingency

🛟 Fermilab

nuSTORM Costing

Sub System	Cost M\$
Primary Beam Line	28.5
Target Station	37.9
Transport Line	16.5
Decay Ring	135.2
Near Hall	23.5 ¹
SuperBIND	27.1 ²
Site work	27
Other	2.5
Sub Total	298.2
Management	37.1 ³
Total	335.3

Total contingency - 45%

¹Near Hall sized for multiple experiments & ND for SBL oscillation physics ²1.3kT Far + .2kT Near & include DAB work ³Assumes LBNE estimates: Proj. Office (10%), L2 (9.4%), L3 (4%)

🛟 Fermilab

Alan Bross nuSTORM & the Physics Beyond Colliders Workshop February 16th, 2017

Association for the Advancement of Costing Engineering (AACE)

		Class 1	Class 2	Class 3	Class 4	Class 5	ESTIMATE CLASS	
	LBNE C	70% to 100%	30% to 70%	10% 10-40%	1% to 15%	0% to 2%	DEGREE OF PROJECT DEFINITION Expressed as % of complete definition	Primary Characteristic
Sullivan	D-1 Director's Review	Check estimate or bid/tender	Control or bid/tender	Budget authorization or control	Study or feasibility	Concept screening	END USAGE Typical purpose of estimate	
	LBNE CD-1 Director's Review - 25-27 September 2012	Detailed unit cost with detailed take-off	Detailed unit cost with forced detailed take-off	Budget Semi-detailed unit costs authorization or with assembly level line, control items	Equipment factored or parametric models	Capacity factored, parametric models, judgment, or analogy	METHODOLOGY Typical estimating method	Secondary Characteristic
	16	L: -3 % to 10% H: +3% to +15%	R +5% to +20%	-10% to -20%	L: -15% to -30% H: +20 <u>% to +5</u> 0%	L: -20% to -50% H: +30% to +100%	EXPECTED ACCURACY RANGE Typical variation in low and high ranges ^{IN}	eristic

Ш

Developing the Cost Range

nuSTORM 2017

MISSION NEED? "Who ordered it?"

Three Pillars of nuSTORM?

2

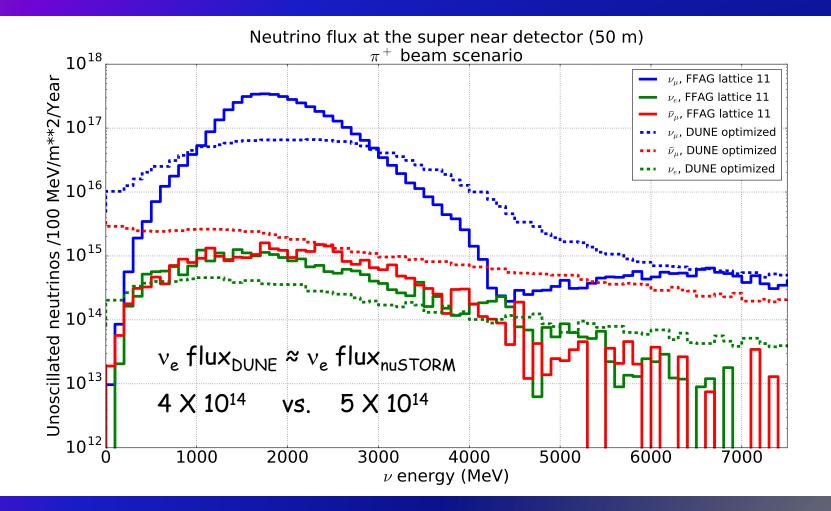
3

•	Delivers on the physics for the study of sterile v
	The allowed region has become very small (0?) and each new measurement has added new
	constraints
•	Can add significantly to our
	knowledge of v interactions,
	particularly for v_e
	> Too little too late?
•	Provides an accelerator
	technology test bed
	Maybe, if that is the direction
	you want to go

vSTORM

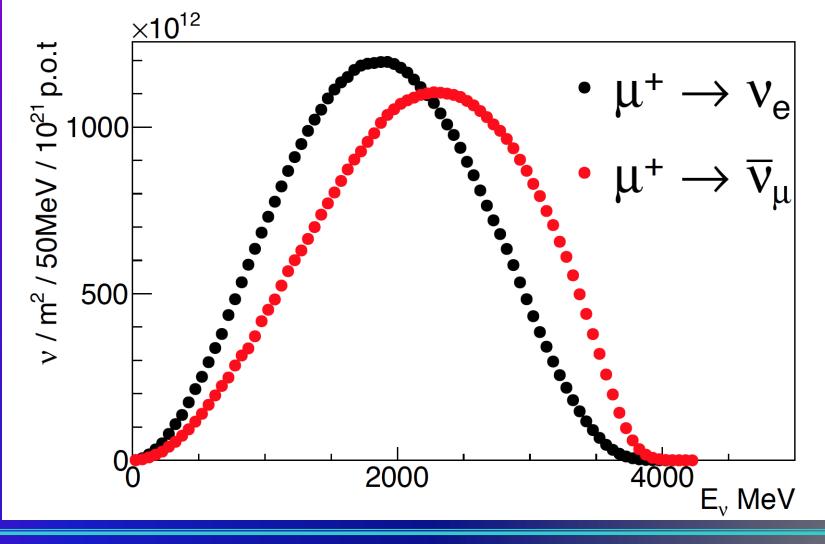
RE: v interaction physics Jear Detector Physics at DUNE

Very powerful ND now being considered


- Large 10 ATM TPC
 - > .5-1T B field
 - > Intrinsic Particle ID
 - Calorimetry inside the magnet
 - > Muon system
- Looking like a collider detector
- > Will have great capability for v interaction physics
- \succ v_e flux ~= to what is obtained at nuSTORM with ~200 kW

Questions:

- > Are backgrounds manageable?
 - > Rock neutrino interactions
 - » Mixed beam
- \succ Detectors measure Flux X σ
 - > How well will Flux be known?



DUNE - flux @ ND

nuSTORM flux @ ND

🛟 Fermilab

Alan Bross nuSTORM & the Physics Beyond Colliders Workshop February 16th, 2017

v Interaction physics

> So, the flux is same

How well is it known (DUNE vs. nuSTORM)?

 We have always said 5-8% for conventional beam vs. 1% or less for nuSTORM
DUNE now says ~ 8% at peak

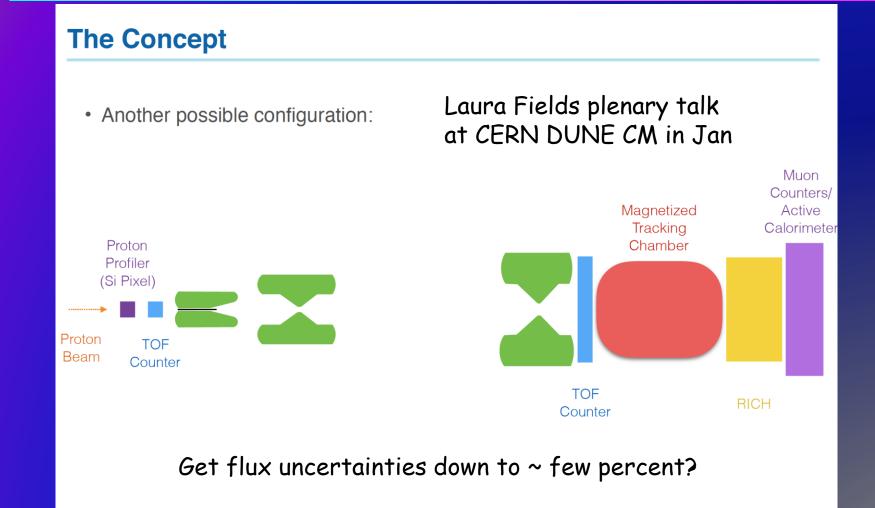
DUNE flux uncertainties

• Our current estimates of neutrino flux uncertainties:

About 8% in the focusing peak

Laura Fields plenary talk at CERN DUNE CM in Jan

🛟 Fermilab



Can they do Better?

A DUNE-specific MPP experiment

nuSTORM mission need (CDO) I

v interaction physics reach

- Not more flux better flux/beam
- But the bar is now likely raised
 - > 1% is not compelling if DUNE eventually gets to a few %
 - > Is 0.1% possible?
- During the nuPIL discussions with DUNE, there was skepticism that 1% flux determination was obtainable
 - » Not demonstrated

Key requirement in establishing mission need for nuSTORM

Detailed and exhaustive MC showing flux uncertainty

First step in path to a future muon facility (µ+µ-)?
Very Hard Sell (in my opinion)
Certainly in the US at this time

Steriles

Dead parrot, for now. Could change rapidly, if something positive comes out of Fermilab SBN program

- The most important (only?) near-term goal/requirement for nuSTORM is to establish "Mission Need" within the greater neutrino community.
 - » Robust & convincing demonstration of flux precision.
- > Technically it is on very sound footing.
- Costs are understood at a level more precise than usually found for a project without having mission need clearly established.

Finally - we will continue to fight the argument that the LBL experiments will do "Good Enough"