Long-lived particles at the LHC

Simon Knapen UC Berkeley & LBL

Triggering on Long-Lived Particles 04 / 18 / 17

Long lifetimes arise from a hierarchy of scales or a small coupling*

Three mechanisms:

- Off-shell decay
- Small splitting (phase space)
- Small coupling

^{*} could either be a hierarchy or loop suppression

Long lifetimes arise from a hierarchy of scales or a small coupling*

Three mechanisms:

- Off-shell decay
- Small splitting (phase space)
- Small coupling

small coupling
$$\Gamma \sim y^2 \left(\frac{m}{M}\right)^n \stackrel{\text{Set by symmetry structure,}}{m \ll M}$$
 typically n \geq 4

Long lifetimes arise from a hierarchy of scales or a small coupling*

Three mechanisms:

- Off-shell decay
- Small splitting (phase space)
- Small coupling

$$\Gamma \sim g_2^2 \left(\frac{m}{m_W}\right)^4 m$$

small coupling
$$\Gamma \sim y^2 \left(\frac{m}{M}\right)^n \stackrel{\text{Set by symmetry structure,}}{m \ll M}$$
 typically n \geq 4

Long lifetimes arise from a hierarchy of scales or a small coupling*

Three mechanisms:

$$n^0 \to p^+ e^- \nu_e$$

 $n^0 \to p^+ e^- \nu_e \qquad \qquad {\tiny n^0 \atop d \atop d} = -$

- Off-shell decay
- Small splitting (phase space)
- Small coupling

$$\Gamma \sim g_2^2 \left(\frac{m_n - m_p}{m_W}\right)^4 (m_n - m_p)$$

small coupling
$$\Gamma \sim y^2 \left(\frac{m}{M}\right)^n \xrightarrow{\text{typically n} \geq 4}$$

$$m \ll M$$
 hierarchy of scales

Long lifetimes arise from a hierarchy of scales or a small coupling*

Three mechanisms:

- Off-shell decay
- Small splitting (phase space)
- Small coupling

$$c\tau \sim 40~\mu{\rm m} \qquad h \ ----$$
 (see also decays with CKM suppression)
$$e^+$$

small coupling
$$\Gamma \sim y^2 \left(\frac{m}{M}\right)^n \stackrel{\text{Set by symmetry structure,}}{m \ll M}$$
 typically n \geq 4

^{*} could either be a hierarchy or loop suppression

Long lifetimes arise from a hierarchy of scales or a small coupling*

Three mechanisms:

- Off-shell decay
- Small splitting (phase space)
- Small coupling

Lessons from the SM:

- generic if there is more than one scale
- Often 3 body decays
- Weak theory prior on lifetime

(e.g. proton decay!)

small coupling
$$\Gamma \sim y^2 \left(\frac{m}{M}\right)^n m$$
 hierarchy of scales

Set by symmetry structure, typically $n \ge 4$

Long lifetimes arise from a hierarchy of scales or a small coupling*

Three mechanisms:

- Off-shell decay
- Small splitting (phase space)
- Small coupling

Lessons from the SM:

- generic if there is more than one scale
- Often 3 body decays
- Weak theory prior on lifetime

(e.g. proton decay!)

small coupling
$$\Gamma \sim y^2 \left(\frac{m}{M}\right)^n m$$
 hierarchy of scales

Set by symmetry structure, typically $n \ge 4$

This talk

Central question:

Is SUSY a good benchmark generator of LLP's?

This talk

Central question:

Is SUSY a good benchmark generator of LLP's?

Huge infrastructure & intuition from prompt searches Some pretty compelling cases Theory bias could lead to blind spots

This talk

Central question:

Is SUSY a good benchmark generator of LLP's?

Huge infrastructure & intuition from prompt searches Some pretty compelling cases Theory bias could lead to blind spots

But first a quick reminder of some of the classics!

(SUSY & non-SUSY)

(Mini -) Split SUSY / GMSB

Split SUSY (3 body)

- Off-shell decay
- Small splitting (phase space)
- Small coupling

$$c\tau \approx 100 \mu m \times \left(\frac{m_{\tilde{q}}}{10^3 \, {\rm TeV}}\right)^4 \times \left(\frac{{\rm TeV}}{m_{\tilde{g}}}\right)^5$$

(Mini -) Split SUSY / GMSB

Split SUSY (3 body)

- Off-shell decay
- Small splitting (phase space)
- Small coupling

$$c\tau \approx 100 \mu m \times \left(\frac{m_{\tilde{q}}}{10^3 \, \text{TeV}}\right)^4 \times \left(\frac{\text{TeV}}{m_{\tilde{g}}}\right)^5$$

Gauge Mediation* (2 body)

$$c\tau \approx 100 \mu m \times \left(\frac{\sqrt{F}}{100 \, {\rm TeV}}\right)^4 \times \left(\frac{100 \, {\rm GeV}}{m_{\tilde{\tau}}}\right)^5$$

* Common misconception: decay NOT gravity suppressed!

Nearly degenerate EW-ino's

aka "anomaly mediation"

- Off-shell decay
- Small splitting (phase space)
- Small coupling

$$c\tau \approx 0.7 \,\mathrm{cm} \times \left(\frac{\Delta m}{340 \,\mathrm{MeV}}\right)^3$$

Disappearing track search

R-Parity Violating SUSY

Two or three-body decay

(many different options)

- Off-shell decay
- Small splitting (phase space)
- Small coupling

Need
$$|\lambda| \lesssim 10^{-8}$$

No MET, unless neutrino in decay chain

dark glueballs / pions

Generic ingredient of hidden valley

& neutral naturalness models

For instance, Higgs portal:

$$c\tau \sim 18 \text{ m} \times \left(\frac{10 \text{ GeV}}{m_0}\right)^7$$

(For hidden pions, see enormous diphoton literature!)

- Small splitting (phase space)
- Small coupling

dark glueballs / pions

Generic ingredient of hidden valley

& neutral naturalness models

- Off-shell decay
- Small splitting (phase space)
- Small coupling

For instance, Higgs portal:

$$c\tau \sim 18 \text{ m} \times \left(\frac{10 \text{ GeV}}{m_0}\right)^7$$

(For hidden pions, see enormous diphoton literature!)

adapted from N. Craig, SK, P. Longhi, M. Strassler: 1601.07181

Dark photons

Decay through mixing with SM photon

To same flavor, charged states only

Strong complementarity with intensity frontier

- Off-shell decay
- Small splitting (phase space)
- Small coupling

Sterile Neutrino's

Three-body decay

At least one lepton/neutrino

example:

- Off-shell decay
- Small splitting (phase space)
- Small coupling

with vector portal

B. Batel, M. Pospelov, B. Shuve: 1604.06099

Back to our question

Central question:

Is SUSY a good benchmark generator of LLP's?

Three categories:

- 1. Tracks (to primary vertex)
- 2. Displaced vertex with MET
- 3. Displaced vertex without MET

Back to our question

Central question:

Is SUSY a good benchmark generator of LLP's?

Three categories:

- 1. Tracks (to primary vertex)
- 2. Displaced vertex with MET
- 3. Displaced vertex without MET

Two crucial pitfalls! (See later)

Tracks (to primary vertex)

Signature	Simplified Model	Covered?
Heavy Stable Charged Particles (HSCP)	Mini-Split / GMSB	
Disappearing tracks*	Squeezed chargino's	
Kinks	GMSB / RPV	Challenging, but decent coverage by other searches**
non-helix tracks	Quirks, Monopoles,	(Poorly) covered by monojet search (See Tim's talk)

^{*} very powerful, IF as inclusive as possible!

SUSY

non-SUSY

^{**} see Z. Liu, B. Tweedie:1503.05923

Displaced vertex with MET

Signature	Simplified Model	Covered?
Z/γ + MET	GMSB	✓
h + MET	GMSB	covered by dijet
ℓℓ+MET	mini-split, RPV, sterile neutrino	✓
$\tau \tau + MET$	mini-split, RPV	probably covered
jj + MET	mini-split, RPV	✓
t t + MET	mini-split	probably covered
diboson (W,Z, γ) + MET	hidden valley?	probably covered
		SUSY
		non-SUSY

Displaced vertex without MET

Signature	Simplified Model	Covered?
j j	RPV, dark photon	
9 9	RPV, dark photon	✓
ττ	RPV, dark photon	probably covered
γγ	dark pion	depends on lifetime
t t	scalar mixed with Higgs	probably covered
diboson (W,Z,γ)	dark pion ?	probably covered
(For non-trivial flavor, use RPV)		SUSY non-SUSY

Pittfals

Sources of theory bias:

- 1. Production mode: SUSY comes with a specific set of production topologies
 - → Try to be as inclusive as possible

(see Yuhsin's talk)

Pittfals

Sources of theory bias:

- 1. Production mode: SUSY comes with a specific set of production topologies
 - → Try to be as inclusive as possible

(see Yuhsin's talk)

- 2. Multiplicity: SUSY tends to emphasize pair production
 - → Obvious fix: when possible, also look at case with single displaced object

But for hidden valleys, this may not be enough!

Hidden valleys

M. Strassler, K. Zurek: 0604261, ...

"Emerging jets"

P. Schwaller, D. Stolarski, A. Weiler: 1502.05409

"Soft Bombs"

SK, S. Pagan Griso, M. Papucci, D. Robinson: 1612.00850

- Larger multiplicity of softer vertices
- Generically comes with MET (some HV particles are likely stable / very long-lived *

^{*} leads to "semi-visible" jets: T. Cohen, M. Lisanti, T. Lou: 1503.00009

(My) conclusion

Central question:

Is SUSY a good benchmark generator of LLP's?

(My) conclusion

Central question:

Supersymmetric
"shadow" particles

Is SUSY a good benchmark generator of LLP's?

SUSY is a good place to start, but a bad place to stop

(e.g. hidden valleys!)

(My) conclusion

Central question:

Is SUSY a good benchmark generator of LLP's?

SUSY is a good place to start, but a bad place to stop

(e.g. hidden valleys!)

To keep in mind when using SUSY:

- 1. There are decay topologies NOT covered by SUSY
- 2. Beware of hidden assumptions on production modes
- 3. Beware of hidden assumptions on multiplicity

