MADMAX: A new road to axion dark matter detection

Béla Majorovits
MPI für Physik, München, Germany

for the MADMAX interest group

OUTLINE:

• Axions as dark matter: The post inflationary scenario

• Experimental idea

• First proof of principle measurements

• Outlook
MADMAX: A new road to axion dark matter detection

Béla Majorovits
MPI für Physik, München, Germany

for the MADMAX interest group

CEA IRFU, Saclay

DESY Hamburg

MPI für Radioastronomie, Bonn

MPI für Physik, München

University of Hamburg

University of Zaragoza
Axion DM: Scenario PQ – Inflation

Axion Photon coupling g_{av}, [GeV$^{-1}$]

Axion mass [μeV]

Dark matter axion predictions:
- KSVZ
- DFSZ

Post-inflation symmetry breaking preferred region

1 m² mirror 10T 1 week
1 m² mirror 10T 5 years

ADMX limit
ADMX-HF limit
IAXO projection

Limits Haloscop

MadMax: A new road to axion dark matter detection
B. Majorovits

TAUP 2017, Laurentian University, Sudbury, 2017, Jul. 24-28
MADMAX
MAgnetized Disc and Mirror Axion eXperiment

Mirror

~2m

10 T dipole magnet

Horn antenna (+ receiver)

Parabolic Mirror

80 adjustable dielectric discs
Ø: ~1m

Separate cryogenic volume
Experimental idea

Chose dielectric material:

- High dielectric constant ε (for large boost & conversion)
 - Low loss \rightarrow low tan δ (reduce photon losses)
 - Stable
 - Cheap

\rightarrow Sapphire (Al_2O_3) @ 300K, 10 GHz:

$\varepsilon \sim 10; \quad \tan \delta \sim \text{few} \cdot 10^{-5}$

\rightarrow Lanthanide Aluminate (LaAlO_3) @ 77K

$\varepsilon \sim 24; \quad \tan \delta \sim 3 \cdot 10^{-5}$

\rightarrow Titanium dioxide – Rutil (TiO_2)

$\varepsilon \sim 100; \quad \tan \delta \sim 0.001(?)$
Experimental idea

Heterodyne detection:

Signal analyzer (3 samplers)

2. Local oscillator

1. Local oscillator

Rubidium time standard (oscillator and sampler synchronization)

1. Amplifier + high pass
First measurements:

Low noise preamp:

• Inject fake 18GHz axion signal with $1 \cdot 10^{-22}$ W power
 • Measurement for 28 hours (integrate signal):
 Receiver at LHe temp.

→ Cross correlation analysis (8kHz Lorentz shaped)
 → found $> 6\sigma$ signal succesfully

→ For 1 week measurement:
 expect Sensitivity at the level of \sim few 10^{-23} W (t.b.c.)
First measurements:

Low noise preamp:

- Inject fake 18GHz axion signal with $1 \cdot 10^{-22}$ W power
- Measurement for 28 hours (integrate signal):
 Receiver at LHe temp.

→ Cross correlation analysis (8kHz Lorentz shaped)
 → found $> 6\sigma$ signal succesfully

→ For 1 week measurement:
 expect Sensitivity at the level of \sim few 10^{-23} W (t.b.c.)
First prototype booster setup:

Transmissivity measurement:
First prototype booster setup:

Transmissivity measurement:

Transmissivity

Simulation

Measurement

Frequency [GHz]
First prototype booster setup:

- Removable copper mirror
- Dielectric discs (Sapphire)
- "Wave guide"
- Horn antenna
- Mirror

Reflectivity measurement:
First prototype booster setup:

Reflectivity measurement:
First prototype booster setup:

Reflectivity measurement:

- Reflectivity Measurement
- Reflectivity Simulation
- Group Delay Measured
- Group Delay Simulated

Frequency [GHz] vs. Reflectivity
First prototype booster setup:

Position reproducibility:

- Space 1 (mm): ±80μm
- Space 2 (mm): ±25μm
- Space 3 (mm): ±70μm
Prototype booster Upgrade:

20 disc setup:
Prototype booster Upgrade:

20 disc setup:
Prototype booster Upgrade:

20 disc setup:
OUTLOOK:

Sensitivity for QCD dark matter axions with $A=1\, \text{m}^2$, $B_{||}=10\, \text{T}$, $T_{\text{sys}} = 8\, \text{K}$, $\beta^2 = 5 \cdot 10^4$

$\tan \delta \lesssim 10^{-4}$ (???)
OUTLOOK:

Sensitivity for hidden photons with $A=1m^2$, $T_{sys}=8K$, $\beta^2=5 \cdot 10^4$

$\tan \delta \lesssim 10^{-4} (???)$
OUTLOOK:

• Sign MoU → officially establish collaboration

• Magnet innovation partnership with (2018) Bilfinger Bacock Noell CEA IRFU

• Desin study for booster realization (2018)

• Build prototype 3-4 T magnet & 20 discs 30cm diameter booster (2021?) → First QCD axions results 2021

• Build full scale experiment (>2022) Considering DESY as site
First prototype booster setup:

- Wave guides
- Removable copper mirror
- Dielectric discs
- Mirror
- Horn antenna
- Ref. signal in
- Precision motors
- Slides for discs
- Signal out

Prototype setup partly funded as seed project by:
Axion DM: Scenario PQ – Inflation

(Pre Inflationary PQ breaking)

Scenario II: PQ symmetry breaking first:

- θ_i has a single random value which determines the dark matter density
- No “topological defects”

QCD dark matter axions can have any mass $\leq 1\text{meV}$!
Axion DM: Scenario Inflation – PQ

(Post Inflationary PQ breaking)

Scenario Inflation first:

- PQ broken after inflation
- θ_i has random values in every casual region, with the dark matter density determined by the average
- Topological defects such as strings and domain walls exist in the early universe
 - decay leads to axion production
 - influence axion density

Predicted axion mass $\sim 100 \, \mu\text{eV}$
First measurements:

Low noise preamp:

InP HEMT preamplifier from LowNoiseFactory

Frequency range: 6-20 GHz

detector noise: $T \sim 7K$ (measured, quick and dirty)
$T_{ds} \sim 6K$ (data sheet)