MADMAX: A new road to axion dark matter detection

Béla Majorovits MPI für Physik, München, Germany

for the MADMAX interest group

OUTLINE:

•Axions as dark matter: The post inflationary scenario

•Experimental idea

•First proof of prinicple measurements

•Outlook

MADMAX: A new road to axion dark matter detection

Béla Majorovits MPI für Physik, München, Germany

for the MADMAX interest group

CEA IRFU, Saclay

DESY Hamburg

UΗ

MPI für Radioastronomie, Bonn

MPI für Physik, München

University of Hamburg

University of Zaragoza

Axion DM: Scenario PQ – Inflation

MADMAX

MAgnetized Disc and Mirror Axion eXperiment

Experimental idea

Chose dielectric material:

- High dielectric constant ε (for large boost & conversion)
 - Low loss \rightarrow low tan δ (reduce photon losses)

StableCheap

 \rightarrow Sapphire (Al₂O₃) @ 300K, 10 GHz:

 $\epsilon \sim 10;$ tan $\delta \sim few \cdot 10^{-5}$

→ Titanium dioxide – Rutil (TiO₂) $\epsilon \sim 100;$ tan $\delta \sim 0.001(?)$

- (3 samplers)
- 2. local oscillator
- 1. local oscillator

Rubidium time standard (oscillator and sampler synchronization)

> 1. Amplifier + high pass

First measurements:

Low noise preamp:

- Inject fake 18GHz axion signal with 1.10⁻²² W power
 - Measurement for 28 hours (integrate signal): Receiver at LHe temp.
 - → Cross correlation analysis (8kHz Lorentz shaped) → found > 6 σ signal succesfully

→ For 1 week measurement: expect Sensitivity at the level of ~ few 10⁻²³ W (t.b.c.)

First measurements:

Low noise preamp:

- Inject fake 18GHz axion signal with 1.10⁻²² W power
 - Measurement for 28 hours (integrate signal): Receiver at LHe temp.
 - → Cross correlation analysis (8kHz Lorentz shaped) → found > 6 σ signal succesfully

→ For 1 week measurement: expect Sensitivity at the level of ~ few 10⁻²³ W (t.b.c.)

Transmissivity measurement:

Excellence Cluster Universe

p. Ag≥±t

First prototype booster setup:

Transmissivity measurement:

Removable copper mirror

First prototype booster setup:

Reflectivity measurement:

Dielectric discs"WaveHorn(Saphire)guide"antennaTAUP 2017, Laurentian University, Sudbury, 2017, Jul. 24-28

Mirror

Excellence Cluster Universe

Reflectivity measurement:

TAUP 2017, Laurentian University, Sudbury, 2017, Jul. 24-28

Excellence Cluster Universe

Reflectivity measurement:

Position reproducibility:

TAUP 2017, Laurentian University, Sudbury, 2017, Jul. 24-28

Prototype booster Upgrade:

20 disc setup:

Prototype booster Upgrade:

20 disc setup:

Prototype booster Upgrade:

20 disc setup:

OUTLOOK:

Sensitivty for QCD dark matter axions with A=1m², B_{||}=10T, T_{sys}= 8K, β^2 =5.10⁴

OUTLOOK:

Sensitivty for hidden photons with A=1m², T_{sys} = 8K, β^2 =5·10⁴

OUTLOOK:

- •Sign MoU → officially establish collaboration
- •Magnet innovation partnership with (2018) Bilfinger Bacock Noell CEA IRFU
- •Desin study for booster realization (2018)
- Build prototype 3-4 T magnet &
 20 discs 30cm diameter booster (2021?)
 → First QCD axions results 2021
- •Build full scale experiment (>2022) Considering DESY as site

Axion DM: Scenario PQ – Inflation (Pre Inflationary PQ breaking)

Scenario II: PQ symmetry breaking first:

- θ_i has a single random value which determines the dark matter density
- No "topological defects"

QCD dark matter axions can have any mass ≲1meV!

Axion DM: Scenario Inflation – PQ

(Post Inflationary PQ breaking)

Scenario Inflation first:

- PQ broken after inflation
- θ_i has random values in every casual region, with the dark matter density determined by the average
- Topological defects such as strings and domain walls exist in the early universe
 - \rightarrow decay leads to axion production
 - \rightarrow influence axion density

Predicted axion mass ~ 100 µeV

B. Majorovits

First measurements:

Low noise preamp:

InP HEMT preamplifier from LowNoiseFactory Frequency range: 6-20 GHz detector noise: T~7K (measured, quick and dirty) T_{ds}~ 6K (data sheet)

