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Dark SU(2) Gauge Boson

LD = �1

4
Ka

µ⌫K
a
µ⌫ + (Dµ�)

†(Dµ�)� µ2�†�+
�

2
(�†�)2

L
mix

=

1

⇤

2

(�

†T a
�)Ka

µ⌫Bµ⌫

� "

2

✓
1 +

�

vd

◆
2⇥
@µK

3

⌫ � @⌫K
3

µ + gd(K
1

µK
2

⌫ �K2

µK
1

⌫ )
⇤

1

cos ✓w
Bµ⌫

� ⌘ mk �mK3 ' �mk

2

"2

cos

2 ✓w

(m2
k � cos

2 ✓wm2
Z,SM)

m2
k �m2

Z,SM

L � Kµ
3

✓
" eJµ

em � "g tan ✓w
m2

k

m2
k �m2

Z

Jµ
Z

◆



Relic Density
7

process
vrel-

dependence
"-

dependence
freeze-out CMB

Indirect
Detection

K1

K1

�

K3

K3

K1 K3

K2

K1 K3

K1

K1

K3

K3

q
v2
rel
4 + 2�

mDM
1 dominant negligible 3

K1

K1

�

K3

�

K1 K3

K2

K1 �

K1

K1

K2

�

K3

1 "2 subdominant dominant
3

(� line)

K1

K2

K3

�

�

K1/2 �

K1/2

K2/1 �

K1

K2

�

�

1 "2
subdominant

(requires
m� < 2mk)

dominant

(requires
m� < 2mk)

3

(� line if
m� < 2mk)

K1 �

K2

K1 �

1 "4 negligible negligible negligible

K1

K2

K3

W+

W�

K1

K2

�/Z
W+

W�

v2rel "2 subdominant negligible negligible

K1

K2

K3

f

f̄

K1

K2

�/Z

f

f̄

v2rel "2 subdominant negligible negligible

Table I. The dominant DM annihilation processes of the DM particles K1,2 in the SU(2)d model. Note
that the channel K1K2 ! �� is kinematically not accessible for m� & 2mk. We list (from left to right),
the Feynman diagrams contributing to a given process, its dependence on the relative velocity vrel of the
annihilating DM particles, its possible suppression by powers of the kinetic mixing parameter ", and its
relevance for DM freeze-out, CMB constraints, indirect and direct detection.

The decoupling of DM from the thermal bath is described by the following coupled Boltzmann
equations:

ṅ12 + 3Hn12 = �1
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where n12 is the total number density of DM particles (K1 and K2 combined), n3 is the number
density of K3, �K3 is the K3 decay rate, and the thermally averaged annihilation cross-sections
h�vi11!33, h�vi11!3� , and h�vi12!ff̄ ,W+W�

correspond to the processes K1K1 ! K3K3, K1K1 !
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ṅ12 + 3Hn12 = �1

2
h�vi11!33


n2
12 � n2

3

✓
neq
12

neq
3

◆2�
� 1

2
h�vi11!3�


n2
12 � (neq

12)
2 n3

neq
3

�

� 1

2
h�vi12!ff̄ ,W+W�

⇥
n2
12 � (neq

12)
2
⇤
, (13)
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Table I. The dominant DM annihilation processes of the DM particles K1,2 in the SU(2)d model. Note
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relevance for DM freeze-out, CMB constraints, indirect and direct detection.
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where n12 is the total number density of DM particles (K1 and K2 combined), n3 is the number
density of K3, �K3 is the K3 decay rate, and the thermally averaged annihilation cross-sections
h�vi11!33, h�vi11!3� , and h�vi12!ff̄ ,W+W�

correspond to the processes K1K1 ! K3K3, K1K1 !
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where n12 is the total number density of DM particles (K1 and K2 combined), n3 is the number
density of K3, �K3 is the K3 decay rate, and the thermally averaged annihilation cross-sections
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where n12 is the total number density of DM particles (K1 and K2 combined), n3 is the number
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pann = fe↵
h�vi
mDM

11

II.4. Constraints from the Cosmic Microwave Background

Another important constraint on any model in which DM can annihilate arises from observations
of the cosmic microwave background (CMB). In particular, the extra energy injected into the
primordial plasma due to DM annihilation would delay recombination and thus leave observable
imprints in the CMB [98–101]. The impact of DM on the CMB is characterized by the “energy
deposition yield” [102, 103]

pann = fe↵
h�vi
mDM

. (19)

Here, fe↵ gives the e�ciency with which the energy released in DM annihilation is absorbed by the
primordial plasma.

For the specific case of the SU(2)d model, we need to consider the annihilation processes shown
in table I. As in the previous sections, we neglect DM annihilation to ��, assuming that � is su�-
ciently heavy for this channel to be closed. We also note that annihilation via K1K2 ! ff̄ ,W+W�

is subdominant at the CMB epoch because of v2rel and "2 suppression, as is K1K1,K2K2 ! ��
because of "4 suppression.

The annihilation cross-section for K1K1,K2K2 ! K3K3 is phase space suppressed by the factorq
v2rel/4� 2�/mk, therefore we need to estimate the DM velocity at the time of CMB decoupling.

To do so, we need to determine the temperature at which DM kinetically decouples from the SM, i.e.
the temperature at which K1,2f ! K2,1f scattering freezes out. (Scattering of K1,2 on photons via
t-channel K1,2 exchange is negligible as the cross-section is proportional to "4.) It turns out that, in
most of the parameter space considered here, this happens no later than at T & 1MeV, when e+e�

annihilation reduces the density of SM fermions by ⇠ 10 orders of magnitude. Afterwards, the
kinetic energy of DM drops quickly as a�2, where a is the scale factor of the Universe. Therefore,
by the time of recombination, the dark sector temperature has dropped to . 10�6 eV. We conclude
that, at the CMB epoch the DM temperature is typically too low to overcome the mass splitting
|�| ⇠ mk"2 in the process K1K1,K2K2 ! K3K3, except at very small " and in a small mass
window with mW,SM < mk < mZ,SM where � > 0 (see eq. (10)). We plot the CMB constraint from
K1K1,K2K2 ! K3K3 in this narrow window, for " = 10�3 in fig. 3 (b). We see that the resulting
limit is gd . 0.2(10�3/")1/4.

Finally, we need to consider the annihilation process K1K1,K2K2 ! K3�. For this annihilation
channel, fe↵ can be written as

fe↵ =
EK3

EK3 + E�
fK3
e↵ (EK3) +

E�

EK3 + E�
f�
e↵(E�) , (20)

where EK3 t 5
4mk and E� t 3

4mk. In eq. (20), the contributions to fe↵ from K3 (fK3
e↵ ) and from

photons (f�
e↵) is weighted by respective energy fraction because the CMB is sensitive to energy

injection into the primordial plasma. fK3
e↵ is given by

fK3
e↵ (EK3 ,mk, ") t

X

i

BRK3!SMiSMi(mk, ")f
SMiSMi
e↵ (EK3/2) . (21)

Here, the sum runs over all SM final states into which K3 can decay, and fSMiSMi
e↵ are the corre-

sponding e�ciency factors for each final state. We take these, as well as f�
e↵ from ref. [104]. We

make the approximation here that the energy of each SMi particle is EK3/2 in the laboratory frame.
Their actual energy is distributed around EK3/2, but since the energy of K3 is very close to its mass
mk, the distribution is very close to a delta function. Moreover, fSMiSMi

e↵ changes only mildly with

X

i

BRK3!SMiSMi(mk, ✏)f
SMiSMi
e↵ (EK3/2)
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ESMi , therefore our assumption is reasonable. For mk smaller than the QCD scale, the calculation
of fK3

e↵ follows the procedure from ref. [105]. Demanding pann < 4.1 ⇥ 10�28 cm3 s�1 GeV�1 [53],
we obtain the constraints shown in green in fig. 3 (a). We see that CMB constraints from
K1K1,K2K2 ! K3� are particularly strong at low DM mass, where the annihilation cross-section
is large. In conventional WIMP models, they exclude thermal relic DM lighter than ⇠ 10 GeV,
while in our SU(2)d model, they can always be avoided by choosing " . 10�2, a condition that is
imposed anyway by dark photon searches (gray region in fig. 3 (a)).

II.5. Indirect Detection

In this section, we will investigate indirect astrophysical constraints on Impeded DM in the
SU(2)d model, in particular from searches for anomalous signals in continuum gamma rays, charged
cosmic rays, and gamma ray lines.

The di↵erential flux of continuum photons from a solid angle interval d⌦ is

d�

dE�d⌦
=

1

8⇡ cm2
DM

J(✓,�)
X

X

h�viX
dNX

�

dE�
, (22)

where h�viX is the thermally averaged annihilation cross-section for a process X, dNX
� /dE� is the

di↵erential photon spectrum for a single annihilation reaction, and the sum runs over all accessible
final states. The factor c is a symmetry factor, which is c = 4 for vector DM. It would be c = 1
(c = 2) if DM was a Majorana (Dirac) fermion.3 The factor J(✓,�) in eq. (22) is the integral over
the squared DM density along the line of sight (l.o.s.) oriented in direction (✓,�). It is given by

J(✓,�) =

Z

l.o.s.
ds ⇢2DM(s, ✓,�) . (23)

We describe ⇢DM as an NFW profile with a local DM density ⇠ 0.3GeV/cm3 [106–108], and a scale
radius of 20 kpc. The cosmic ray e+ and e� spectra are obtained from an expression analogous to
eq. (22), replacing dNX

� /dE� by the corresponding spectra dNX
e±/dEe± .

The dominant contribution to continuum gamma ray and charged cosmic ray signals in the
SU(2)d model comes from the annihilation channel K1K1,K2K2 ! K3K3. Even though we have
seen above that this process is kinematically forbidden at the CMB epoch, it opens up again
later, when DM particles are reaccelerated as they fall into the gravitational potential wells of
newly forming galaxies and clusters. Observable signals arise from K1K1,K2K2 ! K3K3 when
K3 decays to SM particles through its kinetic mixing with the photon and the Z. These decays
contribute to cosmic e+ and e� fluxes through K3 ! e+e�, and to e+, e�, and to gamma ray
fluxes through final state radiation and K3 ! mesons, followed by meson decays. For mk . 3GeV,
we compute the spectra dNe±,�/dEe±,� from e+e� ! hadrons data following ref. [105]. At larger
mk, we compute the K3 decay rates to quark and lepton pairs and then use ref. [109] to obtain the
resulting cosmic ray spectra.

The high-energy e+ and e� can also upscatter ambient photons to gamma-ray energies via in-
verse Compton scattering (ICS), providing an additional secondary contribution to the gamma-ray
flux. This contribution depends on the propagation of the charged particles, and so has additional
uncertainties relative to the prompt photon emission from annihilation. For the constraints we
discuss below, only those from Fermi observations of the Virgo cluster include the ICS component.

3 While the symmetry factor is di↵erent for di↵erent types of DM, the thermal relic cross-sections for di↵erent
candidates are modified by an identical factor, so that the expected gamma ray flux is independent of c.
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We also consider DM annihilation to final states containing mono-energetic photons, where the
dominant signal channel is K1K1,K2K2 ! K3�. In this case dNX

� /dE� is just a � function. As in
the previous sections, we do not consider K1K2 ! ��, assuming this channel to be kinematically
forbidden.

We compare the predicted cosmic ray spectra to the following data sets

• Fermi-LAT observations of dwarf galaxies. We use the bin-by-bin likelihood provided
by the Fermi-LAT collaboration [89], based on observations of 15 non-overlapping dwarf
galaxies. Using eq. (15), we can translate this likelihood into limits on the annihilation cross-
section h�vreli11!33 and hence gd. In computing h�vreli11!33, we account for the di↵erent
root mean square (rms) velocity v0 in each dwarf galaxy, and we use hvreli = (2/

p
⇡)v0. This

approach is valid in the regime where the cross-section is linearly dependent on velocity;
in the forbidden regime where " > v0, it may mis-estimate h�vreli (since in this case the
cross-section will be sensitive to the high-velocity tail of the velocity distribution), but in
this regime the cross-section will in any case be very small.

• Fermi-LAT observations of the Virgo cluster. This constraint is based on three years of
Fermi-LAT data, presented in ref. [91] as upper limits on h�vreliSMiSMi

(mDM), the thermally
averaged DM annihilation cross-section into di↵erent final states consisting of pairs of SM
particles SMi. We impose that

2

c

h
h�vreli11!33 + h�vreli22!33

ih
(BRK3!SMiSMi)

2 + BRK3!SMiSMi

�
1� BRK3!SMiSMi

�i

(24)

should be below the limiting value of h�vreliSMiSMi
(mk/2). Here, c is the same symmetry

factor as in eq. (22), and the last term describes the average number of K3 decays to SMiSMi.
In computing h�vreli11!33 and h�vreli22!33, we use the rms velocity of the Virgo cluster,
v0 = 525 km/sec, and set again hvreli = (2/

p
⇡)v0. We find that the most constraining K3

decay modes are ⌧+⌧� at mk . 40GeV, bb̄ at intermediate mk 2 [40, 200]GeV, and e+e�

at mk & 200GeV. The strong constraint on annihilation to e+e� at high masses arises from
inverse Compton scattering of the electrons on the CMB, which produces photons in the
Fermi-LAT energy range. Note that the authors of [91] multiply the DM annihilation cross-
section by a boost factor to account for enhanced annihilation in overdense DM subhalos.
We do not include boost factors here because (a) the size of this boost factor is highly
uncertain, so constraints assuming a large boost factor are di�cult to make robust, and (b)
since the rms velocity in DM subhalos is much lower than in the host halo, h�vreli11!33 and
h�vreli22!33 will be lower for DM particles bound in subhalos, especially for the very small
subhalos that typically contribute much of the boost.

• Gamma ray constraints from the inner Milky Way. These limits are derived in
analogy to the Virgo limits, but based on the results of ref. [92], assuming an NFW profile
for the Milky Way. We assume an rms velocity v0 = 220 km/sec for the Milky Way, but
we remind the reader that the velocity dispersion in the Galactic Center region is highly
uncertain, see for instance [110].

• Combined x-ray, gamma ray, and e+e� limits for light DM. For low mass DM
(1MeV . mk . 10GeV), Essig et al. [93] have compiled x-ray and gamma ray constraints
for the annihilation channel DMDM ! e+e�. They use data from the HEAO-1 [111],
INTEGRAL [112], COMPTEL [113], EGRET [114], and Fermi [115] satellites. We translate

h�vi11!�3 + h�vi22!�3
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Figure 3. (a): Parameter space for the dark SU(2)d model of Impeded DM as a function of DM mass
mk and kinetic mixing parameter ". Dashed black lines indicate, for each combination of mk and ", the
value of the dark sector gauge coupling gd required to obtain the correct DM relic density. Shaded regions
show constraints from direct detection (LUX, brown) [50, 51] (see also PandaX-II [52]), the CMB (light
green) [53], gamma ray line searches in Fermi-LAT (purple) [54] and H.E.S.S. (blue) [55], collider searches
(ATLAS dilepton, dark green) [56], electroweak precision data (EWPD, yellow) [57], and dark photon
searches (gray) [58–88]. In the region below the dot-dashed gray line, �K3 < H(T = mk) and the model is
in the “co-decaying” regime [16]. Constraints labeled with “-line” correspond to bounds on a monoenergetic
gamma ray flux from K1K1,K2K2 ! K3�. (b): Constraints in the mk vs. gd plane in the region 10�6 . " .
10�3, in which the DM relic density is independent of ". In the gray band, the correct density is obtained.
We compare to constraints from Fermi-LAT gamma ray searches in dwarf galaxies (cyan) [89, 90], in the
Virgo cluster (dark blue) [91], and in the inner Milky Way (dark red) [92], to exclusion limits from AMS-02
positron data (orange), and to a combination of x-ray and gamma-ray bounds from a compilation by Essig
et al. (magenta) [93]. We plot the CMB constraint for a narrow window mk 2 [mW,SM,mZ,SM] where � > 0
and use " = 10�3 for this constraint.

limit to LUX). The LUX constraint is presented in ref. [97] as a mass-dependent limit on the total
DM–nucleon scattering cross-section �n, assuming the latter to be independent of the DM velocity.
This assumption is violated for the photon-mediated scattering processes relevant in our SU(2)d
model. Therefore, we first compute �n in a contact operator model with a fermionic DM candidate
�, for instance L � �̄�µ�q̄�µq and choose the coupling such that the LUX limit is saturated.
We then compute the di↵erential event rate dR/dEr for this operator, taking into account the
Maxwell–Boltzmann-like DM velocity distribution, and multiply by the e�ciency for nuclear recoil
events in LUX [51]. We integrate dR/dEr over the energy range 1.1 keV < Er < 100 keV to
obtain the maximum total number of events Nmax consistent with LUX data. We then computeR
dEr dR/dEr also in our model. By requiring the result to match Nmax determined for the contact

operator, we obtain a constraint on the coupling gd. This constraint is shown in fig. 3 (a) in brown.
We see that it is stronger than indirect bounds and collider bounds for DM masses between 10GeV
and 10TeV.
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show constraints from direct detection (LUX, brown) [50, 51] (see also PandaX-II [52]), the CMB (light
green) [53], gamma ray line searches in Fermi-LAT (purple) [54] and H.E.S.S. (blue) [55], collider searches
(ATLAS dilepton, dark green) [56], electroweak precision data (EWPD, yellow) [57], and dark photon
searches (gray) [58–88]. In the region below the dot-dashed gray line, �K3 < H(T = mk) and the model is
in the “co-decaying” regime [16]. Constraints labeled with “-line” correspond to bounds on a monoenergetic
gamma ray flux from K1K1,K2K2 ! K3�. (b): Constraints in the mk vs. gd plane in the region 10�6 . " .
10�3, in which the DM relic density is independent of ". In the gray band, the correct density is obtained.
We compare to constraints from Fermi-LAT gamma ray searches in dwarf galaxies (cyan) [89, 90], in the
Virgo cluster (dark blue) [91], and in the inner Milky Way (dark red) [92], to exclusion limits from AMS-02
positron data (orange), and to a combination of x-ray and gamma-ray bounds from a compilation by Essig
et al. (magenta) [93]. We plot the CMB constraint for a narrow window mk 2 [mW,SM,mZ,SM] where � > 0
and use " = 10�3 for this constraint.

limit to LUX). The LUX constraint is presented in ref. [97] as a mass-dependent limit on the total
DM–nucleon scattering cross-section �n, assuming the latter to be independent of the DM velocity.
This assumption is violated for the photon-mediated scattering processes relevant in our SU(2)d
model. Therefore, we first compute �n in a contact operator model with a fermionic DM candidate
�, for instance L � �̄�µ�q̄�µq and choose the coupling such that the LUX limit is saturated.
We then compute the di↵erential event rate dR/dEr for this operator, taking into account the
Maxwell–Boltzmann-like DM velocity distribution, and multiply by the e�ciency for nuclear recoil
events in LUX [51]. We integrate dR/dEr over the energy range 1.1 keV < Er < 100 keV to
obtain the maximum total number of events Nmax consistent with LUX data. We then computeR
dEr dR/dEr also in our model. By requiring the result to match Nmax determined for the contact

operator, we obtain a constraint on the coupling gd. This constraint is shown in fig. 3 (a) in brown.
We see that it is stronger than indirect bounds and collider bounds for DM masses between 10GeV
and 10TeV.
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Figure 4. Constraints on the parameter space of the dark pion model from direct detection data [50, 51] and
indirect searches. The indirect detection constraints are similar to those shown in fig. 3 (b). We focus on the
annihilation process ⇡+

d ⇡
�
d ! ⇡0

d⇡
0
d. For each combination of m⇡ and g0, the dark pion decay constant f⇡ is

determined from the relic density requirement eq. (31). In the large-g0 region above the diagonal black line,
this condition is not strictly valid as annihilation via ⇡+

d ⇡
�
d ! A0A0 becomes relevant. In the region below

the horizontal gray line, the relic density is modified by a small ⇡0
d width, preventing ⇡0

d from maintaining
equilibrium with the SM.

In direct detection experiments, dark pion DM can scatter on protons via t-channel A0 exchange.
The scattering cross-section is

�p = "2e2g02
(m⇡mp)2

⇡m4
A0

(m⇡ +mp)2
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. (36)

Based on this expression, we derive constraints on the model parameters from LUX data [50, 51].
The result is shown in fig. 4 (brown contours) for di↵erent values of "(1GeV/mA0), as indicated in
the plot.

Dark pion DM is also constrained by indirect astrophysical observations, where annihilation via
⇡+
d ⇡

�

d ! ⇡0
d⇡

0
d, followed by ⇡0

d ! A0A0 and A0 ! SMSM leaves an imprint. We show the resulting
constraints in fig. 4. In this plot, we have taken mA0 ⇠ m⇡0

d
/2, so that A0 particles decay nearly at

rest. Changing the mass of A0 will not dramatically change our result. Constraints are obtained
in the same way as for the SU(2)d model, see sections II.4 and II.5.




