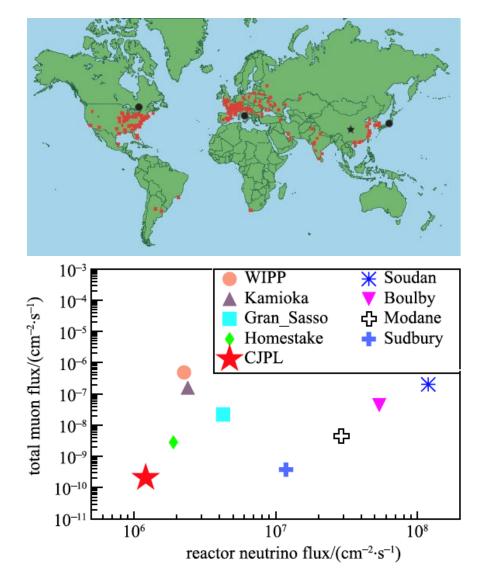
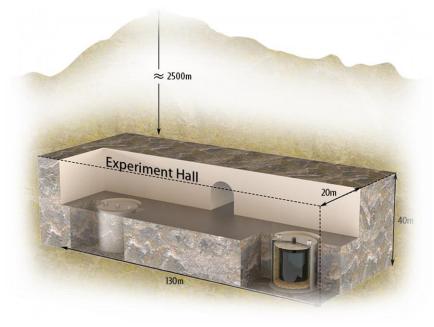
The R&D progress of the Jinping Neutrino Experiment

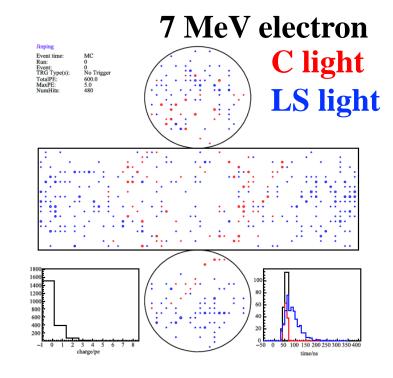
Shaomin Chen (陈少敏)

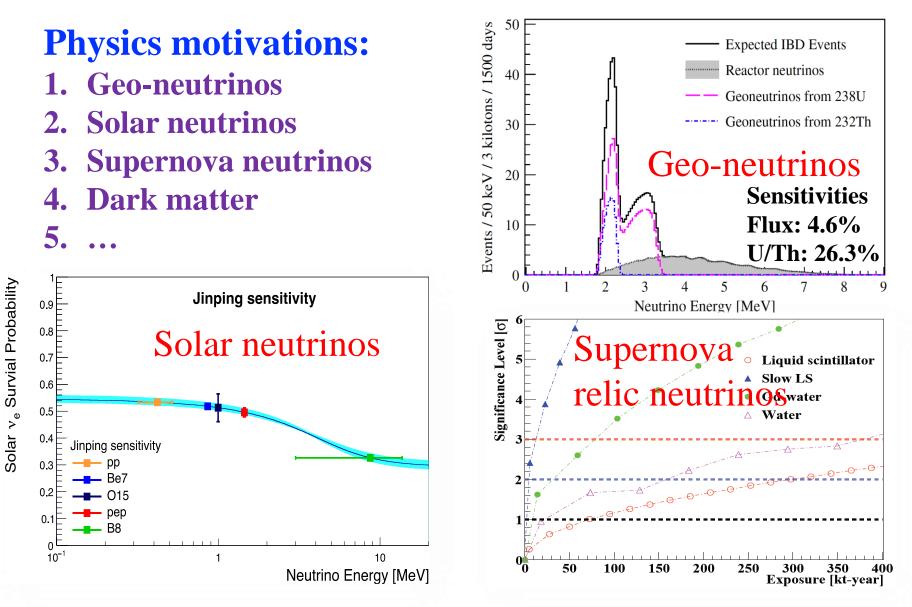

(for the Jinping Neutrino Experiment research group) Department of Engineering Physics Tsinghua University July 27, 2017 @ TAUP2017, Laurentian University

Outline

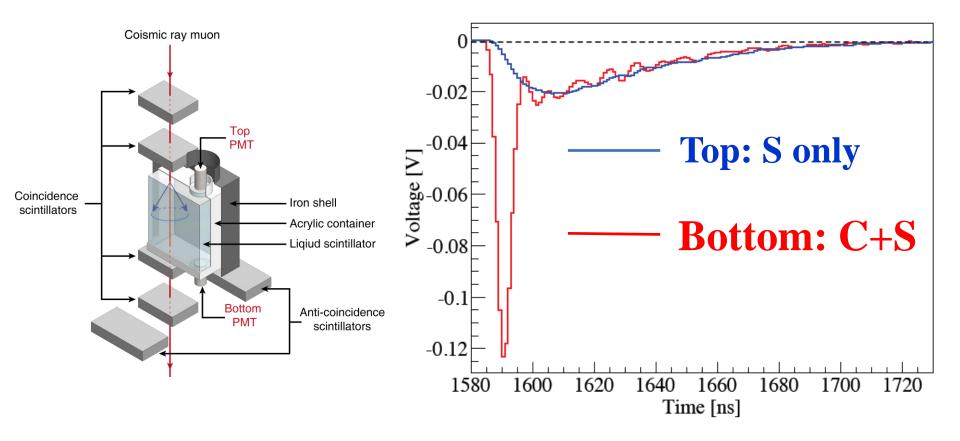
- Jinping neutrino experiment proposal (arXiv:1602.01733, arXiv:1607.01671, arXiv:1612.00133)
- Detector concept: liquid scintillator Cherenkov (arXiv:1511.09339)
- Assay of stainless steel by smelting process (arXiv:1706.04506)
- Wide field-of-view and high-efficiency light concentrator (arXiv:1703.07527)
- One-ton prototype at Jinping (NIMA 855 (2017) 81-87)


China JinPing underground Lab

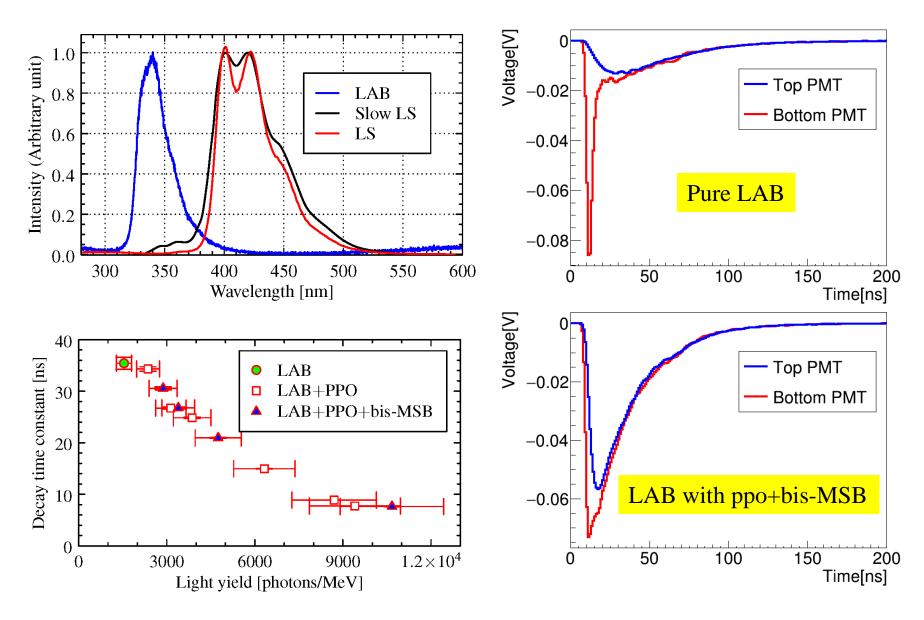

- Two 17-km long road tunnels below Jinping mountain with an overburden: ~2400 m.
- Totally evacuated space > 100k m³ with possible expansion.
- Far away from nuclear power plants
 > 1000 km.
- Least radioactivity contamination.


Detector concept

- Two detectors with total fiducial mass 2000 tons (solar), 3000 tons (geo, supernova).
- ✓ LS or LSC (slow LS with directional info.).
- ✓ With similar low background level as Borexino.
- ✓ Light Yield > 500 pe/MeV.



Jinping neutrino experiment



Liquid scintillator Cherenkov

Test with down-going cosmic rays
Check the waveforms of top and bottom PMTs in pure Linear Alkyl Benzene

With PPO and bis-MSB

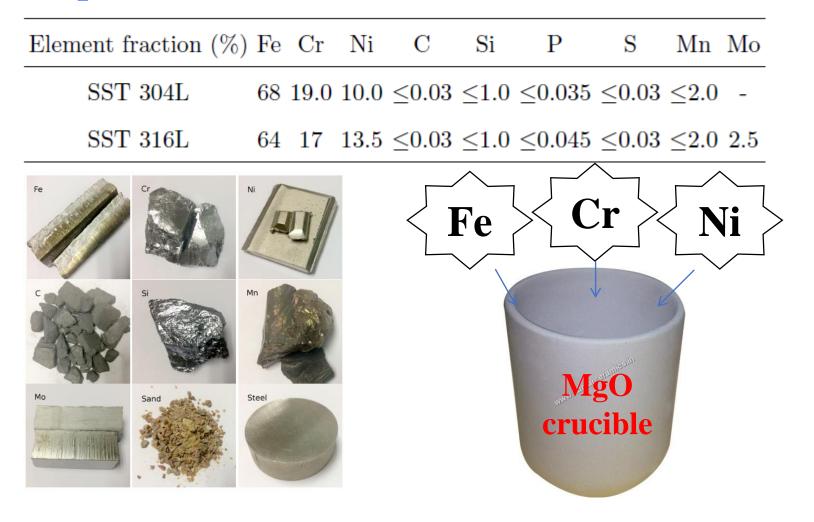
LSC parameters

1. Time constants

$$n(t) = \frac{\tau_r + \tau_d}{\tau_d^2} (1 - e^{t/\tau_r}) \cdot e^{t/t_d} \quad \frac{\tau_r}{\tau_d} (n)$$

2. Light yield

$$L = \frac{D_{s, \exp}}{\varepsilon_{s, \sin} E_{vis}}$$


au_r (ns) rise time au_d (ns) decay time

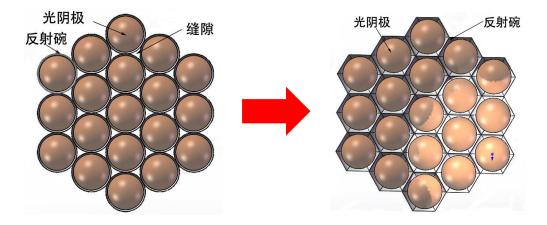
of scintillation PEs

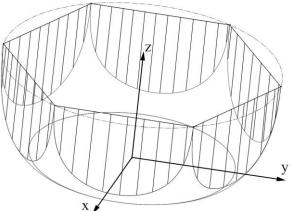
	τ_r (ns)	$\boldsymbol{\tau}_d$ (ns)	<i>L</i> (×10 ³ photon/MeV)	Attenuation length (m)
Pure LAB	7.7 ± 3.0	36.6 ± 2.4	1.01±0.12	19.52±0.39
LAB with ppo + bis-MSB	1.7 ± 0.1	26.6 ± 0.2	3.39±0.44	9.37±0.44

Assay of stainless steel by smelting process

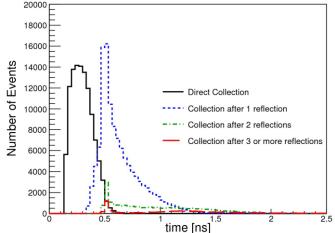
The process uses 99.7% - 99.9% materials.

Samples and procedure test results


Analyzed by GDMS (1E-9 g/g), HPGe-groud (Bq/Kg), HPGe-Jinping (mBq/Kg)

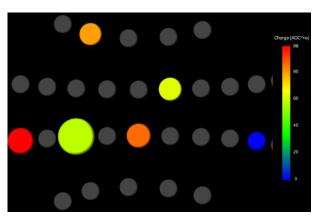

- ✓ C, Si, MgO sand: with significant radioactivity
- ✓ S, P: harmful to SST
- ✓ Mn is not 100% necessary
- ✓ Small impact from MgO crucible

mBq/kg	316-L	Borexino	NEXT
U-238	<5.4	4.6±0.9	32±9
Th-232	<2.0	11.4±1.2	1.9±0.2
K-40	<12.9	<14	3.2±0.7
Co-60	1.4±0.4	6±1	1.8±0.1

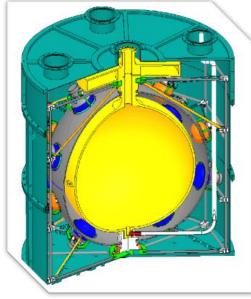

Light concentrator

Proposed a light concentrator with hexagonal opening to improve PMT coverage.

Coverage: ~100%. Collection efficiency: > 97%. Save nPMT: ~20%. Time spread: ~ 2ns.



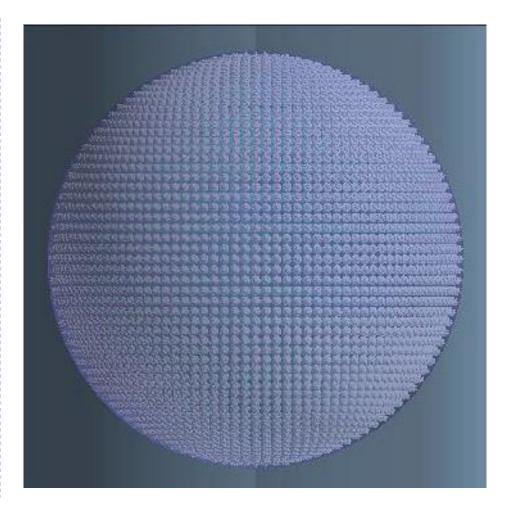
One-ton prototype at CJPL


Motivations:

- Test the idea of LSC
- Study PMT background
- Measure neutron background

Status:

- Started with pure water mode in May
- Will have a replacement of LSC this month



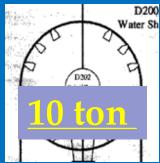
Jinping simulation & analysis package

JSAP

- 1. Comprehensive optical simulation
- 2. Flexible to different geometry setup
- 3. Waveform simulation
- 4. Flow style simulation G4->PMT->Elec-> Trigger
- 5. Doing Slow LS study
- 6. Doing Detector Optimization

Workshop for Jinping v experiment

- 1. 2015, 2017 two international workshops
- 2. Participants from: Tsinghua, SYSU, Queen's University, UCAS, Guangxi **University, Shandong** University, BNL, University of Maryland, Technische **Universität Dresden, Mainz University, Charles University, University of Michigan, Tohoku University, Nanjing University, Wuhan University**



CJPL-II goes far ahead of us

18'-20': TDR

16'-18': CDR

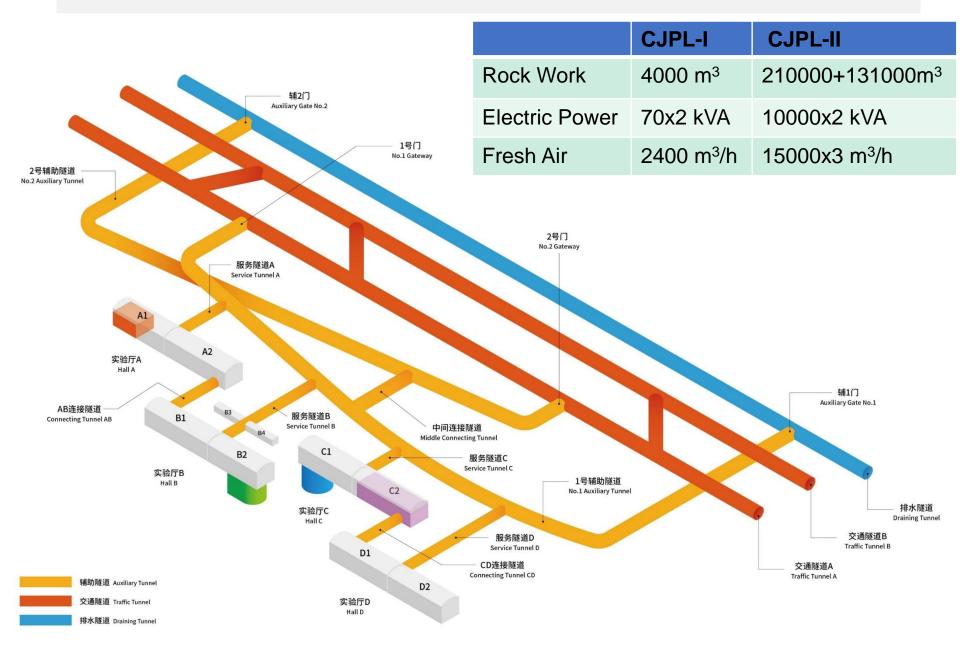
14'-15': LOI

construction 17-18: 10-ton Prototype, **Slow LS and low bkg. Tech**

16: 1 ton Prototype

14-15: 20 L Prototype

14-15: Physics Sensitivity, Baseline parameter


Summary

- CJPL is ideal for the studies on geo, solar, and supernova relic neutrinos
- Significant progress of civic construction has been achieved.
- Many R&D efforts for Jinping neutrino experiment are on-going:
 - **1** liquid scintillator Cherenkov
 - 2 Assay of stainless steel by smelting process
 - **3** Light concentrator with hexagonal opening
 - **4 One-ton prototype is now running**
 - 5 ..

Thanks!

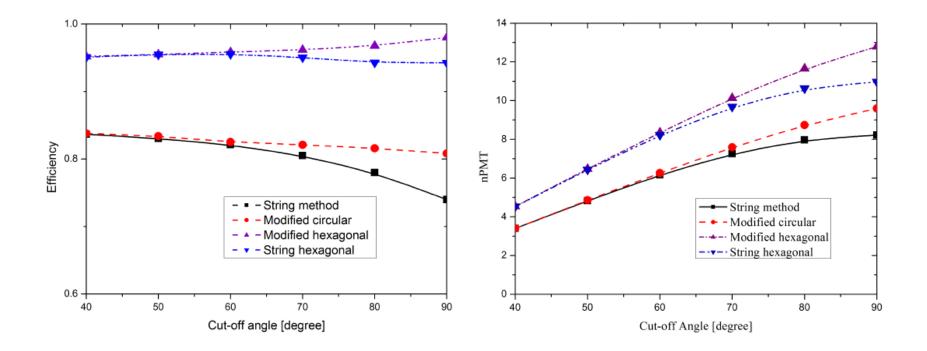
Backup slides

CJPL-II Layout

Key issues in SRN detection

 \checkmark Ignore the backgrounds induced by cosmic muons and reactor neutrinos, which are basically negligible at Jinping

	efficiency	Atmos. CC	Atmos. NC	Optical Photon to PMT
LS	~90%	triple coin. from μ^{\pm} , Michel e^{\pm} , and neutron capture μ^{\pm} visible in 10-30 MeV	Energetic neutrons (< 1GeV atmos. neutrinos considered due to strong quenching of neutron in LS)	Scintillation
water w/o n-tag	~75%	Michel e^{\pm} from invisible	Secondaries (decays) of <i>n</i> or π^{\pm}/π^0 (reduced by n-	Cherenkov
water w/ n-tag	~10%	μ^{\pm} , reduced a lot by n-tag μ^{\pm} invisible in 10-30 MeV	tag) below Cherenkov thresh or different hit	
Gd-water	~70%		pattern	


Green: advantage / Blue: disadvantage Invisible muon: below Cherenkov threshold

- Solution: Cherenkov light + Scintillation light
- \checkmark respective advantages + further suppress due to Cherenkov to Scintillation ratio 22

Table 1. Radioactivity contamination in Bq/kg for some underground laboratories.

site	$^{238}\mathrm{U}$	232 Th	40 K
Jinping	$1.8 \pm 0.2 \ (^{226}\text{Ra})$	< 0.27	<1.1
Sudbury	13.7 ± 1.6	22.6 ± 2.1	$310 {\pm} 40$
Gran Sasso hall A	116 ± 12	12 ± 0.4	307 ± 8
Gran Sasso hall B	$7.1{\pm}1.6$	$0.34{\pm}0.11$	$7{\pm}1.7$
Gran Sasso hall C	11 ± 2.3	$0.37 {\pm} 0.13$	$4{\pm}1.9$
Kamioka	~ 12	~ 10	~ 520

	coverage $(\%)$	ε_{col} (%)	ε (%)	$nPMT(m^{-2})$
No reflectors	91	100	91	14.73
String method	91	86	78	7.97
Modified circular	91	90	82	8.73
String hexagon	100	94	94	10.64
Modified hexagon	100	97	97	11.65

