

Introduction to double electron capture

Double beta decay
$$(\beta^-\beta^-)$$

(Z,A) \rightarrow (Z+2,A) + 2e⁻ + $(2\overline{v}_e)$

- Two β^- decays occur simultaneously.
- 2v modes have been observed in 11 nuclei with half-life of 10^{18} - 10^{24} years. (48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, ¹²⁸Te. ¹³⁰Te. ¹³⁶Xe. ¹⁵⁰Nd. ²³⁸U)

Double electron capture (ECEC) $(Z,A) + 2e^{-} \rightarrow (Z-2,A) + (2v_e)$

- Two orbital electrons are captured simultaneously.
- There are only two positive results on 2v modes ⁷⁸Kr : $T_{1/2} = (9.2^{+5.5}_{-2.6}(stat) \pm 1.3(sys)) \times 10^{21}$ years 130 Ba: $T_{1/2} = (2.2 \pm 0.5) \times 10^{21}$ years

In both cases, if 0v modes are observed, they would be evidence of lepton number violation and Majorana neutrino. 2

2v double electron capture on ¹²⁴Xe

Natural xenon contains ¹²⁴Xe (N.A.=0.095%)
 which can undergo 2vECEC.

¹²⁴Xe (g.s., 0⁺) + 2
$$e^{-}$$
 \rightarrow ¹²⁴Te (g.s., 0⁺) + 2 v_e + 2864keV

- In the case of 2 K-shell electrons are captured,
 - Only X-rays and Auger electrons are observable
 - Total energy deposit is $2 \times E_B = 63.6 \text{ keV}$
- Expected half-life is 10²⁰-10²⁴ years.
- ¹²⁶Xe (N.A.=0.089%) can also undergo 2vECEC, but it is much slower due to smaller Q-value (896keV).

Why is ¹²⁴Xe interesting?

- 124 Xe has the largest Q-value among all the 35 ECEC candidates. It is large enough so that β^+ EC and $\beta^+\beta^+$ channels are also allowed.
 - β+EC: (Z,A) + e⁻ → (Z-2,A) + e⁺ (+2 ν_e)
 - $-\beta^{+}\beta^{+}$: (Z,A) \rightarrow (Z-2,A) + 2e⁺ (+2 ν_{e})
- The $0\nu\beta^+EC$ mode has an enhanced sensitivity to right-handed weak current.
 - It can help to disentangle the contributions of different mechanisms if observed.
- The 0vECEC process may be resonantly enhanced if there exists an excited state with $\Delta = Q_{ECEC} 2E_x E_{\gamma} \sim 0$.
- And... any measurement of 2vECEC will provide a new reference for the calculation of nuclear matrix elements.

The XMASS project

- XMASS: a multi purpose experiment with liquid xenon
- Located 1,000 m underground (2,700 m.w.e.)
 at the Kamioka Observatory in Japan
- Aiming for
 - Direct detection of dark matter
 - Observation of low energy solar neutrinos $(pp/^{7}Be)$
 - Search for neutrino-less double beta decay
- Features
 - ➤ Low energy threshold (~0.5keVee)
 - \triangleright Sensitive to e/ γ events as well as nuclear recoil
 - > Large target mass and its scalability

Single-phase liquid Xenon detector: XMASS-I

- Liquid xenon detector
 - 832 kg of liquid xenon (-100 °C)
 - 642 2-inch PMTs (Photocathode coverage >62%)
 - Each PMT signal is recorded by
 10-bit 1GS/s waveform digitizers
- Water Cherenkov detector
 - 10m diameter, 11m high
 - 72 20-inch PMTs
 - Active shield for cosmic-ray muons
 - Passive shield for n/γ

Data set and event selection

- Previous analysis: Phys. Lett. B759 (2016) 64
 - Data taken during commissioning (Dec. 2010 - May 2012)
 - 132.0 live days
 - 41 kg nat. Xe in fiducial volume

$$T_{1/2}^{2\nu 2K}(^{124}Xe) > 4.7x10^{21} \text{ years}$$

 $T_{1/2}^{2\nu 2K}(^{126}Xe) > 4.3x10^{21} \text{ years}$

This analysis

- Data taken after detector refurbishment (Nov. 2013 - Jul. 2016)
- 800.0 live days → x6 longer
- 327 kg nat. Xe in fiducial volume → x8 larger
- Introduced waveform digitizers
 - → Enabled scintillation pulse shape analysis

β-ray rejection using scintillation time profile

- LXe scintillation decay time depends on electron kinetic energy
- This allows us to separate
 β-ray (single electron track)
 vs.

X-ray/ γ -ray (multiple electrons) or 2v2K (two X-rays)

PSD parameter (β CL) is constructed from each photoelectron's timing under the hypothesis that the event is caused by a β -ray.

$$\beta CL = P \times \sum_{i=0}^{n-1} \frac{(-\ln P)^i}{i!} \qquad P = \prod_{i=1}^n CL_i$$

Scintillation decay time measurement XMASS Collaboration, NIM A834 (2016) 192

βCL<0.05

- Acceptance for γ-ray ~35%
- Acceptance for β -ray ~7%
- → S/N improves by x5

PSD parameter: βCL

Data set and period

- Data in 30-200 keVee are analyzed.
- The data set is divided into 4 periods depending on the detector condition.

Energy spectra in 30-200 keVee (after fitting)

- Chi-square fitting is performed.
- 4 periods x 3 sub-samples are fitted simultaneously.
- by neutrons
- ²¹⁴Pb: ²²²Rn daughter
- 85Kr: constrained by external β-γ
 coincidence measurement
- ³⁹Ar: confirmed by gas chromatography measurement
- ¹⁴C: decreased after gas circulation
- 214Bi: ²²²Rn daughter, increased after gas circulation

Close-up of region of interest (30-100 keVee)

- No significant signal was observed.
- 90% CL lower limit on half-lives:

$$T_{1/2}^{2v2K}(^{124}Xe) > 2.1x10^{22}$$
 years $T_{1/2}^{2v2K}(^{126}Xe) > 1.9x10^{22}$ years

x4.5 improvement from the previous result

Exclusion limits on 124 Xe 2v2K half-life and its theoretical predictions

Note on theoretical predictions:

- g_A= 1.26(lower) 1(upper)
- Probability of 2K-capture = 0.767

We set the most stringent lower limits on the ¹²⁴Xe 2v2K half-life

Summary

- We have conducted an improved search for two-neutrino double electron capture on ¹²⁴Xe and ¹²⁶Xe in XMASS.
 - 800.0 live days (Nov. 2013 Jul. 2016)
 - 327 kg natural xenon in fiducial volume (contains 311 g of ¹²⁴Xe, 291 g of ¹²⁶Xe)
- No significant signal above BG was observed and we set the most stringent lower limits on half-lives.
 - $T_{1/2}^{2v2K}$ (124Xe) > 2.1x10²² years @90%CL $T_{1/2}^{2v2K}$ (126Xe) > 1.9x10²² years @90%CL preliminary

 - x4.5 improvement from the previous result (XMASS(2016))

Backup slides

¹²⁵I background

- ¹²⁵I is created from decay of ¹²⁵Xe or ^{125m}Xe, which is created by thermal neutron capture on ¹²⁴Xe.
 - □ 124 Xe(n, γ) 125 Xe (σ =137 barn)
 □ 124 Xe(n, γ) 125 mXe (σ =28 barn)
 - \square 125mXe \rightarrow 125Xe (IT , T_{1/2}=57 sec)
 - □ 125 Xe \rightarrow 125 I (β+/EC, $T_{1/2}$ =16.9 hours)
- 125 I decays to the excited state of 125 Te. (EC, $T_{1/2}$ =59.4 days)
 - \square X-ray/Auger electron + 35.5 keV γ -ray
- Potential background to search for ¹²⁴Xe 2v2K
 - Total deposit energy is similar (ΔE^4 keV)
 - \Box Emits two X-rays (or γ -ray)
 - ☐ Originated from ¹²⁴Xe

¹²⁵I decay scheme (Table of isotope)

Xenon activation by thermal neutron capture

- Xenon is activated by thermal neutron capture A Xe(n, γ) $^{A+1}$ Xe in the gas xenon volume outside the water shield
- Xenon RIs have shorter half-lives ($T_{1/2}$ < O(10) days), and they reach decay equilibrium.
- Total gas xenon volume: 2.6x10⁵ cm³
 - ☐ Cable feed-through box 89%
 - ☐ Calibration system 9%
 - □ Refrigerator 1.2%
 - ☐ Piping 0.6%
- Thermal neutron flux in the Kamioka mine
 - \square (8.3+/-0.58)x10⁻⁶/sec/cm² Minamino (2004)
 - □ 1.4x10⁻⁵ /sec/cm² Ootani (1994)

