Contribution ID: 55

Type: Contributed talk

MADMAX: A new way of probing QCD Axion Dark Matter with a Dielectric Haloscope - Foundations

Monday, 24 July 2017 14:00 (15 minutes)

WISPy Dark Matter candidates have increasingly come under focus of scientific interest. In particular the QCD Axion might also be able to solve other fundamental problems such as strong CP-violation and could be responsible for inflation and structure formation in the early universe. Galactic Axions, Axion-Like-Particels and Hidden Photons can be converted to photons employing a surface boundary of different dielectric constants under a strong magnetic field. Combining many such surfaces, one can enhance this conversion significantly utilizing constructive interference. The proposed MADMAX setup containing 80 high dielectric discs in a 10T magnetic field might probe the well-motivated mass range of (40-400)µeV, a range which is inaccessible by existing cavity searches. We present the foundations of this approach, discussing implications on the accuracy of disc placement, dark matter velocity effects and expected sensitivity.

Primary authors: CALDWELL, Allen Christopher (Max-Planck-Institut fur Physik (DE)); Mr GOOCH, Chris (Max-Planck-Institute for Physics, Germany, Munich); Mr HAMBARZUMJAN, Armen (Max-Planck-Institute for Physics, Germany, Munich); KNIRCK, Stefan (Max-Planck-Institute for Physics, Munich, Germany); MAJOROVITS, Bela (MPI for Physics); MILLAR, Alexander (Max Planck Institute for Physics); RAFFELT, Georg (MPI Physik, Munich); REDONDO, Javier (LMU/MPP Munich); REIMANN, Olaf (Max Planck Institute); SIMON, Frank (Max-Planck-Institut fue Physik); STEFFEN, Frank Daniel (Max-Planck-Institute of Physics)

Presenter: KNIRCK, Stefan (Max-Planck-Institute for Physics, Munich, Germany)

Session Classification: New Technologies

Track Classification: New Technologies