DarkSide: a program of direct WIMP searches with two-phase argon TPCs
P. Meyers - Princeton TAUP 2017

DarkSide-50 TPC cryostat above liquid scintillator neutron veto in water tank

The DarkSide Program at Gran Sasso Lab

DarkSide-50
150/50/30 kg total/active/fiducial Sensitivity<10-44 cm^{2}
Data: 2013-present

DarkSide-20k
30/23/20 T tot/act/fiducial Sensitivity<10-47 cm^{2}

Data: ~2021

Features

- High light yield: LAr Pulse Shape Discrimination $>10^{7}$
- Underground Argon: low ${ }^{39} \mathrm{Ar}$
-TPC 3D event reconstruction
- High-efficiency neutron vetoing

Two-phase Argon (or Xenon) Time Projection Chamber

S1 (scintillation signal) and S2 (ionization signal) give

- Energy
- 3D position
- Discrimination between
- Nuclear recoil (NR) WIMP or neutron
- Electron recoil (ER) beta or gamma

Pulse Shape Discrimination (PSD) in Liquid Argon

90 ns

Two events with \sim the same integrated S 1 signal. Simple discriminant: $\mathrm{f}_{90}=\mathrm{S} 1$ fraction in first 90 ns .

- $f_{90} \approx 0.3$ for electron recoils (ER)
- $\mathrm{f}_{90} \approx 0.75$ for nuclear recoils (NR)
- Electron rejection as high as 10^{8} with sufficient p.e. statistics

Underground Argon (UAr)

- Atmospheric argon (AAr) has $1 \mathrm{~Bq} / \mathrm{kg}$ of β emitting ${ }^{39} \operatorname{Ar}(\tau=388 \mathrm{y}$, $\mathrm{Q}=565 \mathrm{keV}$)
- We extracted 156 kg of UAr from CO_{2} wells in Colorado for the $2^{\text {nd }}$ run of DarkSide-50

Sum Top PMTs for V1720
With ${ }^{39}$ Ar β 's suppressed, γ 's from the PMTs are dominant background. They often multiscatter and can give signals in the neutron veto.

Sum Bottom PMTs for V1720

Borated-liquid-scintillator neutron veto

- (α, n) from PMT U and Th are the dominant neutron source.
- Separately detect both thermalization and capture signals from neutron.
- Rejection measured with AmC neutrons giving WIMP-like TPC signature.
- Rejection for radiogenic neutrons ~ 500.
- Also effective for cosmogenic neutrons.

 gamma
interaction giving nuclear or e recoil
neutron thermalization
neutron capture

DarkSide-50:
Published WIMP searches 50 days of Atmospheric Argon

$~ 500$ live-days of usable post-70-day UAr data Signal region hidden for our first Blind Analysis

Blind analysis procedure

- Process raw data hiding events in Blinding Box (>> 70-day WIMP box) + a tiny random fraction.
- AAr, 70-day UAr, and calibration-source data all open.
- Develop cuts and predict background using open data.
- Choose cuts and final search box to give <0.1 event of predicted background after all cuts.

(70-day UAr raw data - actually all open)

Example background study: Radiogenic neutrons

Step 1: measure efficiency for

 rejecting neutrons- ${ }^{241} \mathrm{Am}-{ }^{13} \mathrm{C}$ neutron source
- Select neutron events using standard TPC WIMP analysis
- Apply veto cuts
- ~99.3\% veto efficiency for Am-C neutrons
- MC-based corrections (origin and spectrum) from Am-C to internal radiogenic sources

DarkSide-50 Am-C neutron capture spectrum on ${ }^{10} \mathrm{~B}$

- Final efficiency ~99.8\% \rightarrow neutron rejection factor ~ 500

Example background study: Radiogenic neutrons

Step 2: measure neutron rate passing TPC WIMP selection

- Unblind events with neutron-veto signal.
- Select neutron events using standard TPC WIMP analysis
- Veto tags $\sim 99 \%$ of radiogenic neutrons passing TPC cuts
- Negligible ER background (and WIMPs)
- Just count! (We are about to do this...)
... for now, estimate with Monte Carlo
- Use NeuCBot for (α, n) yield and spectrum (arXiv:1702.02465 and S. Westerdale talk tomorrow).
- MC gives ~ 25 neutron events passing TPC cuts in 500 live-days $\Rightarrow 25 \%$ stat error.
- The measurement will be an interesting test of (α, n) predictions.
- Prediction using Step 1 and rate from MC gives 0.04 radiogenic neutron background events in the 500-day WIMP search.

Blind Analysis Status

Most backgrounds estimated and under control:

- Radiogenic neutrons
- Cosmogenic neutrons
- Single and multiple ERs in LAr
- Surface backgrounds (see C. Stanford talk)

Still working on one background:

- Multiple-Compton scatter of gamma
- All-prompt Cherenkov signal in Teflon reflector boosts f90

Now preparing final tests before box opening...

Next Step - DarkSide-20k: 20 ton (fiducial) two-phase TPC

New argon collaboration formed the groups finish their current experiments (DarkSide-50, DEAP$3600, \ldots$) and
$\left.\begin{array}{l}\text { DarkSide } \\ \text { DEAP } \\ \text { MiniCLEAN } \\ \text { ArDM }\end{array}\right]$ DarkSide-20k $\rightarrow 100$ ton* ${ }^{\text {Multi- }}$

DS-20k approved by INFN and LNGS, NSF decision soon.

* Site and technology TBD

DarkSide-20k New Technology

30 tonnes of UAr
...possibly with further depletion.
See A. Renshaw talk Wednesday.

Replaces PMTs with ~13 m^{2} of SiPM.
See G. Giovanetti talk Wednesday

