

The latest from NoVA

Kirk Bays (Caltech)

July 26, 2017

TAUP 2017, Sudbury, Canada

Kirk Bays, TAUP 2017

- FD (at Ash River, MN, 810 km baseline):
 - 16m x 16m x 60m, 14kton, on surface (some barite overburden)
 - ~ ~2/3 LS by mass, ~344,000 cells, 896 planes (64 planes = 1 kton = 1 diblock)
 - 99.5% of channels operational
- ND (@ FNAL, 1km from NuMI target):
 - 4m x 4m x 16m, 0.3kton, underground
 - ~20,000 cells, design similar to FD
 - main differences: size and ND `muon catcher', a range stack at the back end of alternating steel and scintillator planes

Particle Trajectory

Waveshifting

Fiber Loop

ν_{μ} Disappearance

- Start with a beam of $\nu_{\mu}s$, oscillate to other flavors
- $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 \sin^2(2\theta_{23}) \sin^2(1.27\Delta m_{32}^2 L/E)$
- Direct measurement of θ_{23} (maximal?), Δm_{32}^2
- Backgrounds for disappearance:
 - NC neutrino events
 - Cosmic ray background
- Signature:
 - high E muon
 - possible vertex hadronic activity

Second analysis results published recently (PRL April 2017) These results shown next based on 6.05e20 pot Phys. Rev. Lett. 118 (2017) no. 15, 151802

FERMILAB-PUB-17-019-ND

Measurement of the neutrino mixing angle θ_{23} in NOvA

P. Adamson,¹¹ L. Aliaga,¹¹ D. Ambrose,²⁶ N. Anfimov,²² A. Antoshkin,²² E. Arrieta-Diaz,³¹ K. Augsten,⁹ A. Aurisano,⁶ C. Backhouse,⁴ M. Baird,^{33,17} B. A. Bambah,¹⁵ K. Bavs,⁴ B. Behera,¹⁶ S. Bending,³⁷ R. Bernstein,¹¹ V. Bhatnagar,²⁷ B. Bhuyan,¹³ J. Bian,^{20,26} T. Blackburn,³³ A. Bolshakova,²² C. Bromberg,²⁴ J. Brown,²⁶ G. Brunetti,¹¹ N. Buchanan,⁸ A. Butkevich,¹⁸ V. Bychkov,²⁶ M. Campbell,³⁷ E. Catano-Mur,¹⁹ S. Childress,¹¹ B. C. Choudhary,¹⁰ B. Chowdhury,²⁹ T. E. Coan,³¹ J. A. B. Coelho,³⁶ M. Colo,⁴⁰ J. Cooper,¹¹ L. Corwin,³⁰ L. Cremonesi,³⁷ D. Cronin-Hennessy,²⁶ G. S. Davies,¹⁷ J. P. Davies,³³ P. F. Derwent,¹¹ S. Desai,²⁶ R. Dharmapalan,¹ P. Ding,¹¹ Z. Djurcic,¹ E. C. Dukes,³⁸ H. Duyang,²⁹ S. Edayath,⁷ R. Ehrlich,³⁸ G. J. Feldman,¹⁴ M. J. Frank,^{28, 38} M. Gabrielyan,²⁶ H. R. Gallagher,³⁶ S. Germani,³⁷ T. Ghosh,¹² A. Giri,¹⁶ R. A. Gomes,¹² M. C. Goodman,¹ V. Grichine,²³ R. Group,³⁸ D. Grover,³ B. Guo,²⁹ A. Habig,²⁵ J. Hartnell,³³ R. Hatcher,¹¹ A. Hatzikoutelis,³⁴ K. Heller,²⁶ A. Himmel,¹¹ A. Holin,³⁷ J. Hylen,¹¹ F. Jediny,⁹ M. Judah,⁸ G. K. Kafka,¹⁴ D. Kalra,²⁷ S. M. S. Kasahara,²⁶ S. Kasetti,¹⁵ R. Keloth,⁷ L. Kolupaeva,²² S. Kotelnikov,²³ I. Kourbanis,¹¹ A. Kreymer,¹¹ A. Kumar,²⁷ S. Kurbanov,³⁸ K. Lang,³⁵ W. M. Lee,^{11,*} S. Lin,⁸ J. Liu,⁴⁰ M. Lokajicek,² J. Lozier,⁴ S. Luchuk,¹⁸ K. Maan,²⁷ S. Magill,¹ W. A. Mann,³⁶ M. L. Marshak,²⁶ K. Matera,¹¹ V. Matveev,¹⁸ D. P. Méndez,³³ M. D. Messier,¹⁷ H. Mever,³⁹ T. Miao,¹¹ W. H. Miller,²⁶ S. R. Mishra,²⁹ R. Mohanta,¹⁵ A. Moren,²⁵ L. Mualem,⁴ M. Muether,³⁹ S. Mufson,¹⁷ R. Murphy,¹⁷ J. Musser,¹⁷ J. K. Nelson,⁴⁰ R. Nichol,³⁷ E. Niner,^{17,11} A. Norman,¹¹ T. Nosek,⁵ Y. Oksuzian,³⁸ A. Olshevskiy,²² T. Olson,³⁶ J. Paley,¹¹ P. Pandey,¹⁰ R. B. Patterson,⁴ G. Pawloski,²⁶ D. Pershey,⁴ O. Petrova,²² R. Petti,²⁹ S. Phan-Budd,⁴¹ R. K. Plunkett,¹¹ R. Poling,²⁶ B. Potukuchi,²¹ C. Principato,³⁸ F. Psihas,¹⁷ A. Radovic,⁴⁰ R. A. Rameika,¹¹ B. Rebel,¹¹ B. Reed,³⁰ D. Rocco,²⁶ P. Rojas,⁸ V. Ryabov,²³ K. Sachdev,^{11, 26} P. Sail,³⁵ O. Samoylov,²² M. C. Sanchez,¹⁹ R. Schroeter,¹⁴ J. Sepulveda-Quiroz,¹⁹ P. Shanahan,¹¹ A. Sheshukov,²² J. Singh,²⁷ J. Singh,²¹ P. Singh,¹⁰ V. Singh,³ J. Smolik,⁹ N. Solomey,³⁹ E. Song,³⁸ A. Sousa,⁶ K. Soustruznik,⁵ M. Strait,²⁶ L. Suter,^{1,11} R. L. Talaga,¹ M. C. Tamsett,³³ P. Tas,⁵ R. B. Thayyullathil,⁷ J. Thomas,³⁷ X. Tian,²⁹ S. C. Tognini,¹² J. Tripathi,²⁷ A. Tsaris,¹¹ J. Urheim,¹⁷ P. Vahle,⁴⁰ J. Vasel,¹⁷ L. Vinton,³³ A. Vold,²⁶ T. Vrba,⁹ B. Wang,³¹ M. Wetstein,¹⁹ D. Whittington,¹ S. G. Wojcicki,³² J. Wolcott,³⁶ N. Yadav,¹³ S. Yang,⁶ J. Zalesak,² B. Zamorano,³³ and R. Zwaska¹¹

20

pr

ex

hep-

ν_{μ} : Background reduction

- Cut 1: Quality cuts
 - remove junk
- Cut 2: Containment
 - require containment for E reconstruction
- Cut 3: Remove NC events
 - kNN utilizing muon track length, dE/dx, scattering, more
- Cut 4: Remove cosmic ray muons
 - FD is on surface, many cosmic rays
 - use timing for first step: neutrinos only in 10 μs window every 1.3 s
 - still require further ~107 reduction
 - use BDT to get remainder of reduction; inputs include track angles, containment, hadronic activity

 v_{μ} : E reco and efficiency

Neutrino E resolution ~7% FD and ND

- MC estimate at: $sin^2\theta_{23}=0.5$ $\Delta m^2_{32}=2.35 \times 10^{-3} \text{ eV}^2$
- Signal efficiency is function of E

ν_{μ} : Systematics and extrapolation

- Full 3-flavor far over near extrapolation
- Since ND and FD almost identical many systematics cancel (ie flux)
- Remaining large systematics include energy scales and cross-sections
- 2p2h is included in this analysis, starting with Dytman's empirical MEC model and tuning it to our ND data. Cross-section uncertainties includes 2p2h

Source of uncertainty	Uncertainty in	Uncertainty in
	$\sin^2\theta_{23}(\times 10^{-3})$	$\Delta m_{32}^2 (\times 10^{-6} \text{ eV}^2)$
Absolute muon energy scale $[\pm 2\%]$	+9 / -8	+3 / -10
Relative muon energy scale $[\pm 2\%]$	+9 / -9	+23 / -14
Absolute hadronic energy scale $[\pm 5\%]$	+5 / -5	+7 / -3
Relative hadronic energy scale $[\pm 5\%]$	+10 / -11	+29 / -19
Normalization $[\pm 5\%]$	+5 / -5	+4 / -8
Cross sections and final-state interactions	+3 / -3	+12 / -15
Neutrino flux	+1 / -2	+4 / -7
Beam background normalization $[\pm 100\%]$	+3 / -6	+10 / -16
Scintillation model	+4 / -3	+2 / -5
$\delta_{\rm CP} \ (0-2\pi)$	+0.2 / -0.3	+10 / -9
Total systematic uncertainty	+17 / -19	+50 / -47
Statistical uncertainty	+21 / -23	+93 / -99

assuming upper octant

• χ^2 spectrum fit with systematics as nuisance parameters

Results:

- Δm²: 2.67 +- .11
- $\sin^2\theta_{23}$: .402 + .03 0.22 (.626+.22-.03)
- inconsistent with maximal mixing at 2.6 σ

Kirk Bays, TAUP 2017

\mathbf{v}_{e} Appearance

- v_{μ} s in beam oscillate to v_{e}
 - $P(v_{\mu} \rightarrow v_{e}) \sim \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 (\Delta m_{31}^2 L/4E)$
- Measure θ_{13} , possibly hierarchy, constrain δ_{CP}
- Background: beam contamination, NC, cosmics
- Signature is EM shower from electron

 $v_e + v_\mu$ joint analysis 6.05e20 pot data published PRL May 2017 this result shown next Phys. Rev. Lett. 118 (2017) no. 23, 231801

FERMILAB-PUB-17-065-ND

Constraints on Oscillation Parameters from ν_e Appearance and ν_μ Disappearance in NOvA

P. Adamson,¹¹ L. Aliaga,¹¹ D. Ambrose,²⁶ N. Anfimov,²² A. Antoshkin,²² E. Arrieta-Diaz,³¹ K. Augsten,⁹ A. Aurisano,⁶ C. Backhouse,⁴ M. Baird,^{33,17} B. A. Bambah,¹⁵ K. Bays,⁴ B. Behera,¹⁶ S. Bending,³⁷ R. Bernstein,¹¹ V. Bhatnagar,²⁷ B. Bhuyan,¹³ J. Bian,^{20,26} T. Blackburn,³³ A. Bolshakova,²² C. Bromberg,²⁴ J. Brown,²⁶ G. Brunetti,¹¹ N. Buchanan,⁸ A. Butkevich,¹⁸ V. Bychkov,²⁶ M. Campbell,³⁷ E. Catano-Mur,¹⁹ S. Childress,¹¹ B. C. Choudhary,¹⁰ B. Chowdhury,²⁹ T. E. Coan,³¹ J. A. B. Coelho,³⁶ M. Colo,⁴⁰ J. Cooper,¹¹ L. Corwin,³⁰ L. Cremonesi,³⁷ D. Cronin-Hennessy,²⁶ G. S. Davies,¹⁷ J. P. Davies,³³ P. F. Derwent,¹¹

R. Dharmapalan,¹ P. Ding,¹¹ Z. Djurcic,¹ E. C. Dukes,³⁸ H. Duyang,²⁹ S. Edayath,⁷ R. Ehrlich,³⁸ G. J. Feldman,¹ M. J. Frank,^{28, 38} M. Gabrielyan,²⁶ H. R. Gallagher,³⁶ S. Germani,³⁷ T. Ghosh,¹² A. Giri,¹⁶ R. A. Gomes,¹² M. C. Goodman,¹ V. Grichine,²³ R. Group,³⁸ D. Grover,³ B. Guo,²⁹ A. Habig,²⁵ J. Hartnell,³³ R. Hatcher,¹¹ A. Hatzikoutelis,³⁴ K. Heller,²⁶ A. Himmel,¹¹ A. Holin,³⁷ J. Hylen,¹¹ F. Jediny,⁹ M. Judah,⁸ G. K. Kafka,¹⁴ D. Kalra,²⁷ S. M. S. Kasahara,²⁶ S. Kasetti,¹⁵ R. Keloth,⁷ L. Kolupaeva,²² S. Kotelnikov,²³ I. Kourbanis,¹¹ A. Krevmer,¹¹ A. Kumar,²⁷ S. Kurbanov,³⁸ K. Lang,³⁵ W. M. Lee,^{11,*} S. Lin,⁸ J. Liu,⁴⁰ M. Lokajicek,² J. Lozier,⁴ S. Luchuk,¹⁸ K. Maan,²⁷ S. Magill,¹ W. A. Mann,³⁶ M. L. Marshak,²⁶ K. Matera,¹¹ V. Matveev,¹⁸ D. P. Méndez,³³ M. D. Messier,¹⁷ H. Mever,³⁹ T. Miao,¹¹ W. H. Miller,²⁶ S. R. Mishra,²⁹ R. Mohanta,¹⁵ A. Moren,²⁵ L. Mualem,⁴ M. Muether,³⁹ S. Mufson,¹⁷ R. Murphy,¹⁷ J. Musser,¹⁷ J. K. Nelson,⁴⁰ R. Nichol,³⁷ E. Niner,^{17,11} A. Norman,¹¹ T. Nosek,⁵ Y. Oksuzian,³⁸ A. Olshevskiy,²² T. Olson,³⁶ J. Paley,¹¹ P. Pandey,¹⁰ R. B. Patterson,⁴ G. Pawloski,²⁶ D. Pershev,⁴ O. Petrova,²² R. Petti,²⁹ S. Phan-Budd,⁴¹ R. K. Plunkett,¹¹ R. Poling.²⁶ B. Potukuchi.²¹ C. Principato.³⁸ F. Psihas.¹⁷ A. Radovic.⁴⁰ R. A. Rameika.¹¹ B. Rebel.¹¹ B. Reed.³⁰ D. Rocco.²⁶ P. Rojas.⁸ V. Rvabov.²³ K. Sachdev.^{11,26} P. Sail.³⁵ O. Samovlov.²² M. C. Sanchez.¹⁹ R. Schroeter.¹⁴ J. Sepulveda-Quiroz,¹⁹ P. Shanahan,¹¹ A. Sheshukov,²² J. Singh,²⁷ J. Singh,²¹ P. Singh,¹⁰ V. Singh,³ J. Smolik,⁹ N. Solomey,³⁹ E. Song,³⁸ A. Sousa,⁶ K. Soustruznik,⁵ M. Strait,²⁶ L. Suter,^{1,11} R. L. Talaga,¹ M. C. Tamsett,³³ P. Tas,⁵ R. B. Thayyullathil,⁷ J. Thomas,³⁷ X. Tian,²⁹ S. C. Tognini,¹² J. Tripathi,²⁷ A. Tsaris,¹¹ J. Urheim,¹⁷ P. Vahle,⁴⁰ J. Vasel,¹⁷ L. Vinton,³³ A. Vold,²⁶ T. Vrba,⁹ B. Wang,³¹ M. Wetstein,¹⁹ D. Whittington,¹⁷ S. G. Wojcicki,³² J. Wolcott,³⁶ N. Yadav,¹³ S. Yang,⁶ J. Zalesak,² B. Zamorano,³³ and R. Zwaska¹¹ (The NOvA Collaboration)

- Cosmic rays are an easier problem since the signal signature isn't a muon; a cut eliminates these
- Then signal is isolated by use of a Convolutional Visual Network
- This advanced deep-learning technique uses the raw pixel maps, which are transformed to pull out abstract features, which are fed into a neural network
- 30% signal efficiency increase over our first analysis
- Data divided into 3 CVN bins x 4 energy bins

v_e: Results

- 33 final ν_{e} events pass selection
 - background 8.2+-0.8
- The data is combined with the ν_{μ} data and fit simultaneously to extract δ_{CP} information
- Because the number of selection events is high, IH hierarchy with $\delta_{\rm CP}$ values between 0 and π are largely excluded

Sterile analysis

- A recent search for sterile neutrinos by looking for NC oscillations
- No evidence for sterile oscillations, constraints set
- Paper submitted, arXiv version:
 - arXiv:1706.04592
- Check it out!

Next for NOvA

- Preparing for next data release: 9e20 data neutrino mode (50% increase)
- Also analysis improvements:
 - better systematics
 - using CVN for ν_{μ}
 - improved cuts
 - revised 2p2h and x-section handling
- Timescale for 9e20: by end of year
- Just finished taking anti-neutrino mode data (~3.5e20 pot), currently on shutdown, will take more after
- Anti-neutrino and joint neutrino/antineutrino analyses in the works

Backups

2 functional parameters: q0 and |q| q0 taken to match QE |q| tuned to our ND data

