First results of CUPID-0

Stefano Pirro - INFN-LNGS
CUPID-0 Collaboration
Scintillating Bolometers: rudiments of operation

A Bolometric Light Detector is a fully active a particle detector

The time response of a BLD is the same of a standard bolometer 0 (ms)

The QE of a BLD could, probably, be close to 1 but it is rather difficult to measure it

Operating Temperatures for massive detectors: 10÷30 mK
The Lucifer Grant (2010-2015) was dedicated to R&D to be finalized in one enriched demonstrator made of enriched scintillating crystals in the order of few kg of enriched material. During the R&D several crystals containing ^{82}Se, ^{100}Mo, ^{116}Cd were tested an also the tiny Cherenkov light from a (non scintillating) TeO$_2$ was measured.
LUCIFER Low-background Underground Cryogenics Installation For Elusive Rates

isotope: ^{82}Se, ^{100}Mo, ^{116}Cd

material: ZnSe, ZnMoO$_4$, CdWO$_4$

choice: Choice induced by non availability on the market (2012) of ^{100}Mo and ^{116}Cd

From 2016 this activity is funded by INFN under the INFN-CUPID Project. For this reason, LUCIFER is called now CUPID-0, the first demonstrator in view of CUPID.
LUCIFER: the forerunner of CUPID

Cuore Upgrade with Particle IDentification

CUPID-0 will be the first enriched bolometer $\beta\beta$ experiment that will demonstrate the background rejection achievable for hybrid $\beta\beta$ scintillating bolometers.
Bolometric Light Detectors

In case of scintillating crystals, even in case of “bad” scintillators (Light Yield ≈ 0.05 %), the scintillation light at $Q_{\beta\beta}$ results of the order $O(1\ \text{keV})$. This amount of energy release can be “easily” readout by standard thermistor-based bolometers.

The light detector is a Ge thin wafer equipped with a small thermistor.

These devices are calibrated through an ionizing ^{55}Fe sources.

R&D mounting setup

JW Beeman et al. JINST 8(2013) P07021

CUPID-0 detector

^{55}Fe

5.9

6.5

$\text{RMS}_{\text{baseline}}$ [eV] τ_r [ms] τ_d [ms]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LD Top-1</td>
<td>32.5 ± 0.5</td>
<td>1.68</td>
<td>5.15</td>
</tr>
<tr>
<td>LD Top-2</td>
<td>39.3 ± 0.7</td>
<td>1.91</td>
<td>5.75</td>
</tr>
<tr>
<td>LD Top-3</td>
<td>57.1 ± 0.8</td>
<td>1.71</td>
<td>3.41</td>
</tr>
<tr>
<td>LD Bot-1</td>
<td>43.9 ± 0.7</td>
<td>1.83</td>
<td>5.45</td>
</tr>
<tr>
<td>LD Top-4</td>
<td>37.8 ± 0.6</td>
<td>1.66</td>
<td>5.23</td>
</tr>
<tr>
<td>LD Top-5</td>
<td>112.2 ± 2.0</td>
<td>1.81</td>
<td>9.17</td>
</tr>
<tr>
<td>LD Top-6</td>
<td>65.7 ± 1.0</td>
<td>1.88</td>
<td>10.96</td>
</tr>
<tr>
<td>LD Bot-6</td>
<td>46.1 ± 0.7</td>
<td>1.82</td>
<td>5.39</td>
</tr>
</tbody>
</table>

$\langle \sigma \rangle = 55\ \text{eV} \sim 25\ \gamma$
The mechanical configuration of the CUPID-0 tower was designed by the LNGS Mechanical workshop and 3D printing service. Driving Idea: minimize frame mass, type of pieces, use only certified (large slab) copper.

**ZnSe 78 %
Cu 22%
PTFE 0.1%**
CUPID-0 Construction

The detectors were assembled in the Low Rn content Dark Side clean room @LNGS

14-Oct-2016
The fully mounted CUPID-0 detector
CUPID-0: Location and main features

24 Zn^{82}Se bolometers, for a total mass $\approx 5.1 \text{ kg of } ^{82}\text{Se}$
2 ZnSe bolometer \approx400 g each, not enriched in ^{82}Se
$Q_{\beta\beta}(^{82}\text{Se}) = 2998 \text{ keV}$

Light detectors high purity Ge wafers with antireflecting coating
Thermal sensors made with NTD thermistors
Detector assembled in 5 towers in Cuoricino/CUORE-0 cryostat
Total active mass of the detector \approx10.5 kg

CUPID-0 is installed in the Old Mibeta-Cuoricino-CUORE-0 dilution refrigerator placed in the Hall A of LNGS

Some upgrades were done on the cryogenic system:
- New double pendulum system to reduce vibrational noise
- Upgrade of the radon abatement system to reduce ^{214}Bi
- Improvements in the injection line of the mixture
- New cryostat wiring to measure up to 120 detectors
- A completely new FE electronics

https://www.lngs.infn.it/en/cupid
The SR-0 enabled us to fix several bugs of electronic and SW. After the stop we implemented few major changes.

The SR-1 started 3 June 2017 we presently have (Physics+Calibrations) > 93 %
It is clear that the abrupt difference between the baseline resolution of the detector and the effective energy resolution @2615 keV is due to the non perfect quality of the crystals.

Energy resolutions are still (slightly) improving…
Light Detectors at first glance

LDs work extremely good.

- Presently we cannot give the actual performance since, for obvious reasons, no ^{55}Fe sources were mounted on CUPID-0.

- Nevertheless the performances can be inferred by roughly looking at the S/N ratio at the scintillation signal @2615 keV: it is very good for all the detectors.

- Moreover, the discrimination factor evaluated on internal α-lines is completely satisfying.

Different Scintillation signal for α and β/γ

![Graph showing scintillation signal for alpha and beta/gamma](image)

Shape parameter of scintillation [a.u.]

Internal α's

^{228}Th Calibration

Energy [keV_{ee}]

Total Background Spectrum, no cuts

$^{65}\text{Zn} - \text{EC}$

^{40}K

$2\nu \sim 8000 \text{ c/keV/kg/y (or \sim 7200 events)}$

exposure $= 0.9 \text{ kg x y}$

bin width $= 8 \text{ keV}$

^{208}TI
Cut efficiency of the order of ~93%. Will slightly increase after optimization of the coincidence jitter time (in progress).
A not negligible background is induced by internal contamination belonging to the \(^{232}\)Th chain, through the decay of \(^{208}\)Tl with Q-Value of 5 MeV. The decay is preceded \((T_{1/2} \approx 3 \text{ min})\) by the \(\alpha\)-decay of \(^{212}\)Bi, with Q-value 6.2 MeV.

Dead time \(\sim 6\%\) due to the presence of the \(^{218}\)Po line. We will increase the LT by optimizing the energy window.
Total cut efficiency of SR-0 is 87 % (evaluated at ^{65}Zn -1135 keV). We are working to reach a cut efficiency >90%.
Conclusions

✓ The α-rejection technique works at best

✓ The SR-0 shows the extremely low background in the 2ν region

✓ The first background in the 0vDBD ^{82}Se is promising

✓ The first reliable evaluation of the BI will be released as soon as our background model will be ready and the statistics has increased at least by a factor three (September)
The CUPID-0 collaboration

O. Azzolinia, M. T. Barreraa, J. W. Beemanb, F. Bellinic,d, M. Berettae,f, M. Biassonif, C. Brofferioe,f, C. Buccig, L. Canonicag, S. Capellie,f, L. Cardanid, P. Carnitie,f, N. Casalic,d, L. Cassinae,f, N. Chotth, M. Clementee,f, O. Cremonesif, A. Crucianic,d, I. Dafineid, S. Di Domizioi,j, F. Ferronic,d, L. Gironie,f, A. Giulianik,l, P. Gorlag, C. Gottie,f, G. Keppela, M. Mainoe,f, M. Martinezc,d, S. Morgantid, S. Nagornym, M. Nastasie,f, S. Nisig, C. Nunesh, D. Orlandig, L. Pagnaninim, M. Pallavicinii,j, V. Palmieria, L. Pattavinag, M. Pavane,f, G. Pessinaf, V. Pettinaccid, S. Pirrog, S. Pozzie,f, E. Previtalif, A. Puiue,f, F. Reindld, C. Rusconig,h, K. Schäfferm, L. Sinkunaitee,f, C. Tomeid, M. Vignatid, A. Zolotarovan

INFN - Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020 - Italy a
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 - USA b
Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185 - Italy c
INFN - Sezione di Roma, Roma I-00185 - Italy d
Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126 - Italy e
INFN - Sezione di Milano Bicocca, Milano I-20126 - Italy f
INFN - Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila) I-67010 - Italy g
Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208 - USA h
Dipartimento di Fisica, Università di Genova, Genova I-16146 - Italy i
INFN - Sezione di Genova, Genova I-16146 - Italy j
CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France k
DiSAT, Università dell’Insubria, 22100 Como, Italy l
Gran Sasso Science Institute, 67100, L’Aquila - Italy m
IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France n
BACKUPS
The “final” decision of the LUCIFER detector was due, finally to the market availability of enriched material. At that time (2010-2011) we didn’t succeed to get any kind of feedback from Russia.

The only “feasible” producer was, therefore, URENCO in Holland. URENCO did not have any kind of production line of Mo-isotopes (due to the not-easy to handle- gas phase of Mo isotopes), so that \textbf{the only possibility was }^{82}\text{Se} \text{ (that is enriched through the standard Hexafluoride technique)}

The contract for the delivery of 10+5 kg ^{82}Se was signed in mid 2011. The price for the production was fixed at 70kEuro/kg @> 95 % i.a.

The ^{82}Se production went on rather smooth. After the delivery of the first 5 kg, we recognized a trace contamination of the enriched metal beads both in U and Th. URENCO therefore developed in 2014 a \textbf{small vacuum distillation set-up} to decrease the contamination (also of Na and S used for the $^{82}\text{SeF}_{6}$ to ^{82}Se metal conversion)

<table>
<thead>
<tr>
<th></th>
<th>Se(Enr.)</th>
<th>Se(enr-Dist.)</th>
<th>Se(enr-Dist.)</th>
<th>Zn (nat)</th>
<th>Zn (nat)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[mBq/kg]</td>
<td>[mBq/kg]</td>
<td>[g/g]</td>
<td>[mBq/kg]</td>
<td>[g/g]</td>
</tr>
<tr>
<td>$^{238}\text{U} / ^{226}\text{Ra}$</td>
<td><0.41</td>
<td>< 0.11</td>
<td>< 9.0 10^{-12}</td>
<td>< 0.066</td>
<td>< 5.4 10^{-12}</td>
</tr>
<tr>
<td>$^{232}\text{Th} / ^{228}\text{Th}$</td>
<td>1.4 ± 0.2</td>
<td>< 0.11</td>
<td>< 2.6 10^{-11}</td>
<td>< 0.036</td>
<td>< 8.9 10^{-12}</td>
</tr>
<tr>
<td>^{40}K</td>
<td>3 ± 1</td>
<td>< 0.99</td>
<td>< 3.2 10^{-8}</td>
<td>< 0.38</td>
<td>< 1.2 10^{-8}</td>
</tr>
</tbody>
</table>
Background consideration: the “old” cryostat

This is not the Holy Shroud, but the drawing of the old Oxford Cryostat hosting CUPID-0. The construction materials were selected, but with radioactive prescriptions of 30 years ago……
The crystals were polished in the Low Rn Dark Side Clean Room @LNGS

Background spectrum of three Zn82Se crystals before and after the surface polishing with Ultrapure SiO$_2$ powder.
Environmental “underground” Background: ^{238}U and ^{232}Th trace contaminations

Surface and Bulk contaminations

CUORICINO α Background
ZnSe crystals shows an “inverse” QF, i.e. α-particles scintillate more than β/γ's (C. Arnaboldi et al., Astrop. Phys. 34(2011))

The α-induced background is recognized through two independent measurements: 1) the decay time of the scintillating signal 2) the different scintillation yield between α and γ/β particles (the “usual” light Vs Heat scatter plot)

ZnSe crystals and α discrimination

2) Light Vs Heat scatter Plot

- "Ionization coincidences" between Ge light detector and ZnSe
- Smeared α-source
- 208TI calibration source

1) Decay time of the scintillation light

- β/γ scintillation
- α-scintillation
- Direct ionization

JW Beeman et al., JINST 8 (2013) P05021

TeO$_2$... Not TeO$_2$... This is the problem !!!

CUPID

TeO$_2$

Pros

✓ Well defined and known compound
✓ Large commercial crystal production
✓ High reproducibility

✓ $Q_{\beta\beta}$ above 2516 keV
✓ α Id is straightforward
✓ Enriched material already pure
✓ Crystal growth yield can reach 85%

Cons

✓ $Q_{\beta\beta}$ below 2516 keV
✓ α and surface ID needs extremely performing technologies
✓ Crystals yield is presently low (30%)

✓ Not commercial crystals
✓ Larger enrichment price
✓ Not yet proved crystal growth reproducibility (demonstrator)