PeVatron Search Using Radio Measurements of Extensive Air Showers at the South Pole

Aswathi Balagopal V.

Co-authors: A. Haungs, T. Huege, F. G. Schröder

Karlsruhe Institute of Technology

TAUP 2017

- H.E.S.S. has seen evidence for the existence of a PeVatron at the center of our galaxy ^[1].
- Extending the TeV gamma ray spectrum to PeV energies.
- Are PeV gamma rays produced from the Galactic Center? Can we search for them?

¹A. Abramowski et al. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature, 531:476, 2016

KIT-The Research University in the Helmholtz Association

- IceCube Neutrino Observatory has a full exposure to the Galactic Center.
- Already has a cosmic-ray detector setup: IceTop
- IceTop consists of ice-Cherenkov tanks.
- Future enhancement with scintillators.
- Also a large surface array as part of IceCube-Gen2. (further details about IceCube-Gen2: *Claudio Kopper, High Energy Neutrinos, Plenary session*)
- Possibly a radio antenna array with an area of 1km².

IceTop tanks

radio antenna [eg. LOFAR]

Scintillator panels

- Will help in measuring different components of the cosmic-ray air shower (electromagnetic and muonic).
- We can **search for PeV gamma rays from the Galactic Center** (by combining the particle detectors with **radio antennas**).

- PeV gamma rays hitting the atmosphere will produce air showers which can be detected on the ground.
- The Galactic Center lies at around 61 degrees inclination at the South Pole (always visible).
- Difficult to effectively reconstruct such events using particle detectors.
- Higher probability to capture such events with the help of radio detection techniques.
- Radio signal from inclined shower leaves a large footprint on the ground.
- We can use the scintillator array/IceTop tanks to trigger the antennas.

[T. Huege, A. Haungs]

- The electromagnetic component of the air shower can be detected with radio technique.
- Radio component is a first order energy estimator (quasi-calorimetric).
- Using hybrid techniques (radio + particle detectors) we get a better understanding of the air shower (helps in estimation of electron/muon ratio).
- Inclined air showers give a large elliptical radio footprint.

[T. Huege]

- Collimation of the electromagnetic waves due to the refractive index of air.
- Causes time compression of the signal in certain distances.
- Can be seen only at certain frequency ranges.
- Has sensitivity to Xmax.

[A. Zilles]

Radio simulations (CoREAS) of photon primary with one antenna per IceTop station.

Cherenkov ring is visible if we go to higher frequencies. We get stronger signals at these frequencies.

- So far, the energy range thought to be accessible with radio detection technique is $\gtrsim 10^{16}~\text{eV}.$
- At lower particle energies, radio signals become weak and are overwhelmed by background especially at 30-80 MHz (well studied bandwidth).
- So it is crucial to look for the bandwidth where we can lower the energy threshold for the detection of PeV gamma rays.

T. Huege

Noise

- At 30-80 MHz bandwidth, the signal from a 10 PeV shower will get dominated by the Galactic noise background.
- $\bullet\,$ Galactic noise model adapted from H.V. Cane, thermal noise of $\sim 300 K$ added.
- Noise temperature can be related to power delivered to the antenna by $P = kT\delta\nu$.

- Comparing the signal in one antenna (shower with E=10 PeV, 61°) with a random time trace of noise.
- At higher frequencies, there is a better chance to see the signal above the noise.
- SNR = $\frac{S^2}{N^2}$; S = max of the Hilbert envelope, N = rms noise
- $\bullet~{\rm SNR}>10$ is the limit for detection that is shown by other radio experiments.

Scanning the bandwidth

10 PeV gamma primary with 61° inclination: A typical station at the Cherenkov ring (distance to shower axis \approx 107 m).

The region in red shows the bandwidths with a high level of signal-to-noise ratio

Dependence on zenith angle

10 PeV photon with different zenith angle: Showers with antennas located at each IceTop station and with core at the center.

All antennas where SNR becomes < 10 have been set to white.

Energy threshold

61 degree photon showers

The threshold can be lowered to 1 PeV if we go to the optimum frequency bandwidth and have an antenna spacing of \approx 125 m.

- Combining radio and particle detectors can help in obtaining a better reconstruction of the air showers.
- For inclined arrival direction radio antennas will help in measuring the electromagnetic part of the shower.
- We can search for PeV gamma rays from the Galactic Center with such a setup.
- A high level of SNR is obtained at frequencies like 100-190 MHz.
- Utilizing this we can lower the energy threshold down to 1 PeV for gamma rays coming from a zenith angle of 61° (direction of the Galactic Center at the South Pole).

Backup

Expected number of events

- $E^{-2.3}$ fit to the H.E.S.S. spectrum without cut-off gives ≈ 23 events per year for an array of 1 km² area.
- Fit with cut-off at 116 TeV \Rightarrow no events will be detected.

Dependence on azimuth

10 PeV photon showers of 61° inclination

 $\approx 50\%$ change in the SNR when the azimuth changes (but same order of magnitude).

40 degree photon showers

It is possible to lower the threshold for these zeniths if we have antennas within 100 m distance from the shower axis.

Lateral distribution of the radio component

- Gamma showers have more electromagnetic component, resulting in higher amplitude in the radio profile.
- We can see a clear separation in the radio profile of gamma and proton at higher zenith angles.

Inclined air showers

- Auger Engineering Radio Array (AERA) has shown that highly inclined showers can be detected using radio arrays.
- Leave a large footprint on the ground.

The footprint of an inclined shower in AERA