Recent Results from the SuperCDMS Soudan Experiment

Jodi Cooley on behalf of the SuperCDMS Collaboration

The SuperCDMS Collaboration

 $^+ \mbox{The SMU}$ SuperCDMS group is supported by the NSF under grant number 1151869.

Overview: SuperCDMS Soudan

Phonon sensor layout:

- Location: Soudan Underground Laboratory, Minnesota, USA @ ~2090 mwe
- Science operations from Mar. 2012 late 2015.
- Experiment contains 15 iZIP detectors, stacked into 5 towers
 - interleaved Z-sensitive Ionization and Phonon detectors (iZIP)
- Each side instrumented with 2 charge (inner + outer) & 4 phonon (1 inner + 3 outer) sensors

Active and Passive Shielding

Active Muon Veto:

rejects events from cosmic rays

Polyethyene: moderate neutrons from fission decays and (α,n) interactions

Pb: shielding from gammas resulting from radioactivity

Low Radioactivity Pb: shields ²¹⁰Pb betas

Cu: radio-pure inner copper can

Community Assays Database

Use Clean Materials

Community Material Assay Database							
	Search	Submit Settings	About				
	copper			٩			
» EXO (2008)	Copper, OFRP, Norddeutsche Affiner	rie Th	< 2.4 ppt	U	< 2.9 ppt		×
▶ EXO (2008)	Copper tubing, Metallica SA	Th	< 2 ppt	U	< 1.5 ppt		31
▶ ILIAS ROSEBUD	Copper, OFHC						36
XENON100 (2011)	Copper, Norddeutsche Affinerie	Th-228	21() muBq/kg	U-238	70() muBq/kg		26
XENON100 (2011)	Copper, Norddeutsche Affiinerie	Th-228	< 0.33 mBq/kg	U-238	< 11 mBq/kg		24
▶ EXO (2008)	Copper gasket, Serto	Th	6.9() ppt	U	12.6() ppt		3%
• EXO (2008)	Copper wire, McMaster-Carr	Th	< 77 ppt	U	< 270 ppt		ж

http://radiopurity.org

Supported by AARM, LBNL, MAJORANA, **SMU**, SJTU & others Currently hosted by SNOLAB

Detection Principles

Standard iZIP Mode:

 Primary (prompt) phonon and ionization signals allow for discrimination between NR and ER events

CDMSlite HV Mode:

- Drifting electrons across a potential (V) generates a large number of phonons (Luke phonons).

Enables very low thresholds!
Trade F: No NR/FR diserinitation

CDMSlite Data

- Run 1: Aug. Sept. 2012 [PRL 112, 041302, 2014]
- Run 2 (period 1): Feb. July 2014 -
 - [PRL 116, 071301, 2016]
- Run 2 (period 2): Sept. Nov. 2014
- Run 3: Feb. May 2015 (analysis ongoing)

Ionization Energy Scale Calibration

 Corrected for environmental and operational changes (i.e. base temperature, parasitic resistances, position dependence.)

- ²³²Cf Source:
 - $-70Ge + n \rightarrow 71Ge$
 - ⁷¹Ge decays via electron capture
 - Well known energy released in K-, L-, and M-shell captures
 - K-shell (BR $\leq 88\%$): 10.37 keV
 - L-shell (BR $\leq 11\%$): 1.30 keV
 - M-shell (BR $\leq 2\%$): 0.16 keV
- High statistics K-shell capture used for calibration.

- Low energy background events (e.g. ²¹⁰Pb)
- Sidewalls are grounded and readout on one detector side
 - e/h pairs created near detector sides traverse a V < V_{bias}
 - Reduces Luke amplification
 - Adds low energy tail to spectrum

Radial Parameter

- Each pulse is fit with a "slow" and "fast" template.
- Use pulse features (amplitude, energy and delay) to derive empirical radial parameter.
- Empirical radial parameter is used to define a fiducial volume.

Fiducial Radial Cut

Removes >90% of reduced amplification events.

- ⁷¹Ge activation peaks are visible in both Runs 1 & 2.
- ⁶⁵Zn K-shell electron capture peak visible in Run 1.
- Run 1 threshold 170 eV_{ee}
- Run 2 (period 1) threshold 75, (period 2) 56 eV_{ee}

Run 2 Limit Setting

- UBC
- Used Optimal Interval* with Inbackground subtraction.
- Converted to nuclear recoil (NR) equivalent energy using Lindhard model: $g(E_{nr}, Z, A)$ $\frac{g(E_{nr}, Z, A)}{Y(E_{nr}) = k(Z, A) \cdot \frac{g(E_{nr}, Z, A)}{1 + k(Z, A) \cdot g(E_{nr}, Z, A)} \overline{Z, A)}$
 - Created 1000 samples with input parameters drawn from uncertainty distributions.
 - k(Ge) = 0.157, scanned over [0.1, 0.2].
 Final result given by median.
 Uncertainty given by distribution.

*S. Yellin, Phys. Rev. D 66, 032005 (2002)

CDMSlite Results

Run 2: Spin Dependent Results

High Threshold Analysis Sensitivity

Conclusions

- CDMSlite Run 2 has produced world leading limits in the search for low mass WIMPs. It excludes parameter space for WIMPs with masses between 1.6 and 5.5 GeV/c² for spin independent interactions and new parameter space below 4 GeV/c² (2 GeV/c²) for spindependent WIMP-neutron (proton) interactions .
- The interpretation of the excess events seen by CoGeNT as a WIMP signal is disfavored. CDMS II (Si) disfavored assuming standard WIMP interactions and a standard halo model.
- The standard high threshold analysis of SuperCDMS is ongoing and aims for a background of less than 1 event. Results will be reported soon.
- Further analyses of SuperCDMS Soudan data are ongoing including CDMSlite Run 3 and a search for Lightly Ionizing Particles.

TAUP 2017 - Results from SuperCDMS Soudan - Jodi Cooley

Backup Slides

Astrophysical Uncertainties

Limit dependence on galactic escape velocity assuming Maxwellian halo model.

Astrophysical Uncertainties

Limit dependence on WIMP velocity assuming Maxwellian halo model.

Astrophysical Uncertainties

95% Uncertainty band on limit due to uncertainties in the WIMP velocity and the galactic escape velocity.

Efficiencies

Fiducial volume cut is primarily responsible for reduction in efficiency between Run 1 and Run 2.

CDMSlite: Run 2 Data

- Same iZIP was used, IT5Z2 0.6 kg
- 70 kg-days of data taken between Feb Nov 2014.
 - Two data periods 59.32 kg-days and 10.78 kg-days
- Improvements over Run 1
 - Mitigate transient detector leakage current
 - Improved electronics board reduced variation in bias potential
 - Vibration sensors installed to monitor cryocooler low frequency noise.

 Analysis improvements lead to better energy calibration, low frequency noise rejection and improved fiducial volume.

Reached energy threshold for electron recoils of 56 eV!

CDMSlite: Run 1 Data

- Proof of Principle

- Data were taken during three periods in 2012
 - 6.25 kg-days exposure
- One iZIP was used, (IT5Z2 – 0.6 kg)
 - Selected for its low trigger threshold and low leakage current
 - 170 eV ionization threshold

PRL 112, 041302, 2014