SuperCDMS & Radon

Ray Bunker

Topics in Astroparticle and Underground Physics

July 26, 2017
Radon Backgrounds

Non-line-of-sight (penetrating) Backgrounds:

- Inner surface of lead shield
- Cryostat surfaces
- Inner poly surfaces & Interstitial air gaps

SNOLAB Detector Backgrounds

- Radon Decay Chain
 - Radon (Rn)
 - Polonium (Po)
 - Bismuth (Bi)
 - Lead (Pb)

- Photon emissions
- Beta emissions
- Recoil events

Recoil Energy (keV) vs. dR/dE (events/kg-yr-keV)

- Solar neutrinos
- Neutrons
- β-particle recoils
- ³²Si
- ³²P
- ³H
- ²⁰⁶Pb recoils
Radon Backgrounds

Non-line-of-sight (penetrating) Backgrounds:
Electron recoils:
→ ^{210}Bi bremsstrahlung
 (limit exposure of surfaces to radon)
→ ^{214}Pb & ^{214}Bi gamma-rays
 (purge lead shield with low-Rn gas)

SNOLAB Detector Backgrounds

Non-line-of-sight Radon Background
≈1% of Total Electron Recoil Photon Background
Radon Backgrounds

Non-line-of-sight (penetrating) Backgrounds:

Electron recoils:
- ^{210}Bi bremsstrahlung
 (limit exposure of surfaces to radon)
- ^{214}Pb & ^{214}Bi gamma-rays
 (purge lead shield with low-Rn gas)

Nuclear Recoils:
- ^{210}Po (α,n) on ^{13}C in poly
 (limit exposure of surfaces to radon)

SNOLAB Detector Backgrounds

Non-line-of-sight Radon Background
<1% of Total Nuclear Recoil
Neutron Background

Radon Decay Chain

α α α

Betas

^{32}Si

^{32}P

^{3}H

^{206}Pb recoils

Photons

Solar neutrinos

Recoil Energy (keV)

dR/dE (events/kg-yr-keV)
Radon Backgrounds

Line-of-sight (non-penetrating) Backgrounds:

Detector-surface Backgrounds

copper housing

detector

adjacent detector

SNOLAB Detector Backgrounds

Radon Decay Chain

Radon Backgrounds

Line-of-sight (non-penetrating) Backgrounds:

Detector-surface Backgrounds

copper housing

detector

adjacent detector

SNOLAB Detector Backgrounds
Radon Backgrounds

Line-of-sight (non-penetrating) Backgrounds:

Electron recoils:

→ ^{210}Pb & ^{210}Bi betas and x-rays

SNOLAB Detector Backgrounds

Detector-surface Backgrounds

- Copper housing
- Detector
- ^{210}Pb
- x-ray
- ^{210}Bi
- Adjacent detector

Radon Background

≈100% of Detector-surface Electron Recoils
Radon Backgrounds

Line-of-sight (non-penetrating) Backgrounds:

Electron recoils:
- 210Pb & 210Bi betas and x-rays

Nuclear Recoils:
- 206Pb recoils from 210Po decays

Detector-surface Backgrounds

Snolab Detector Backgrounds

Line-of-sight Radon Background
\approx100% of Detector-surface Nuclear Recoils
Radon Backgrounds

Line-of-sight (non-penetrating) Backgrounds:

Electron recoils:
\[\rightarrow {^{210}}\text{Pb} \text{ & } {^{210}}\text{Bi} \text{ betas and x-rays} \]

Nuclear Recoils:
\[\rightarrow {^{206}}\text{Pb} \text{ recoils from } {^{210}}\text{Po} \text{ decays} \]

Potentially dominant backgrounds unless:
- Detector/copper surfaces clean at start
- And protected from radon thereafter

Detector-surface Backgrounds

Calls for dedicated background controls:

I. Limit exposure to radon during payload lifecycle
II. Dedicated low-radon cleanroom at SNOLAB
III. Validate cleanliness of critical processes
Payload Lifecycle & Radon Exposure

<table>
<thead>
<tr>
<th>Procedure</th>
<th>^{210}Pb (nBq/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 – storage</td>
<td><0.1</td>
</tr>
<tr>
<td>#2 – polishing</td>
<td>12–45</td>
</tr>
<tr>
<td>#3 – fabrication</td>
<td>28</td>
</tr>
<tr>
<td>#4 – packaging</td>
<td>4.8</td>
</tr>
<tr>
<td>#5 – tower assembly</td>
<td>0.9</td>
</tr>
<tr>
<td>#6 – testing</td>
<td>1.1</td>
</tr>
<tr>
<td>#7 – installation (w/ 1000x Rn mitigation)</td>
<td><0.1</td>
</tr>
<tr>
<td>#7 – installation (w/o Rn mitigation)</td>
<td>70</td>
</tr>
</tbody>
</table>
Payload Lifecycle & Radon Exposure

<table>
<thead>
<tr>
<th>Procedure</th>
<th>^{210}Pb (nBq/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 – storage</td>
<td><0.1</td>
</tr>
<tr>
<td>#2 – polishing</td>
<td>12–45</td>
</tr>
<tr>
<td>#3 – fabrication</td>
<td>28</td>
</tr>
<tr>
<td>#4 – packaging</td>
<td>4.8</td>
</tr>
<tr>
<td>#5 – tower assembly</td>
<td>0.9</td>
</tr>
<tr>
<td>#6 – testing</td>
<td>1.1</td>
</tr>
<tr>
<td>#7 – installation</td>
<td><0.1</td>
</tr>
<tr>
<td>(w/ 1000x Rn mitigation)</td>
<td></td>
</tr>
<tr>
<td>#7 – installation</td>
<td>70</td>
</tr>
<tr>
<td>(w/o Rn mitigation)</td>
<td></td>
</tr>
</tbody>
</table>

^{210}Pb from Rn exposure (conservative plate-out tally):

Detector surfaces: 47–80 nBq/cm2
- Assume worst for sidewalls \rightarrow 80 nBq/cm2
- Sensor fab removes surface area on faces \rightarrow 50 nBq/cm2

Copper surfaces: <10 nBq/cm2
Payload Lifecycle & Radon Exposure

Procedure	**^{210}Pb (nBq/cm2)**
#1 – storage | <0.1
#2 – polishing | 12–45
#3 – fabrication | 28
#4 – packaging | 4.8
#5 – tower assembly | 0.9
#6 – testing | 1.1
#7 – installation (w/ 1000x Rn mitigation) | <0.1
#7 – installation (w/o Rn mitigation) | 70

^{210}Pb from Rn exposure (conservative plate-out tally):

- **Detector surfaces**: 47–80 nBq/cm2
 - Assume worst for sidewalls \rightarrow 80 nBq/cm2
 - Sensor fab removes surface area on faces \rightarrow 50 nBq/cm2
- **Copper surfaces**: <10 nBq/cm2

Plate-out \approx2x larger without low-radon cleanroom
Low-radon Cleanroom @ SNOLAB via Vacuum-Swing Adsorption (VSA)

Class-100 Low-radon Cleanroom

Custom-built Radon Mitigation System

SNOLAB General Lab Air ≈130 Bq/m³

Rn adsorbs to carbon at atmospheric pressure

Rn is purged from carbon at vacuum ≈ 2 Torr

SNOLAB General Lab Air ≈130 Bq/m³

Radon-mitigated Air <0.1 Bq/m³
Demonstration VSA @ SDSM&T
Demonstration VSA @ SDSM&T

Input Air
$\langle \text{Rn} \rangle = 80 \text{ Bq/m}^3$

Cleanroom Radon
Level $<0.07 \text{ Bq/m}^3 \rightarrow >1000x \text{ reduction!}$

Simultaneous RAD7 Readings
Validation of Critical Processes

Bottom-up estimate of ^{210}Pb plate-out from radon exposure in air:

- **Detector surfaces**: $50/80$ nBq/cm2 for faces/sidewalls
- **Tower-copper surfaces**: <10 nBq/cm2

But doesn’t include:

- Initial level of surface contamination
 - do surfaces start clean?
- Contamination directly from fabrication processes
 (e.g., chemical contact)

R&D tests to validate critical processes:

- **Detector surfaces** → crystal polishing & sensor fabrication
- **Copper surfaces** → cleaning method

<table>
<thead>
<tr>
<th>Procedure</th>
<th>^{210}Pb (nBq/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 — storage</td>
<td><0.1</td>
</tr>
<tr>
<td>#2 — polishing</td>
<td>12–45</td>
</tr>
<tr>
<td>#3 — fabrication</td>
<td>28</td>
</tr>
<tr>
<td>#4 — packaging</td>
<td>4.8</td>
</tr>
<tr>
<td>#5 — tower assembly</td>
<td>0.9</td>
</tr>
<tr>
<td>#6 — testing</td>
<td>1.1</td>
</tr>
<tr>
<td>#7 — installation (w/ 1000x Rn mitigation)</td>
<td><0.1</td>
</tr>
<tr>
<td>#7 — Installation (w/o Rn mitigation)</td>
<td>70</td>
</tr>
</tbody>
</table>
Sensor Fabrication Test

Goals:
- Validate starting level of 210Pb on detector surfaces
- Validate surface contamination from sensor fabrication

Results:
- Broad 4–5 MeV peak suggests upper-chain 238U alphas
- Precedent from DRIFT \rightarrow Battat et al., NIM A794 (2015)
- Background concern \rightarrow 234Th daughter beta decay
- Follow-up measurements:
 - Backsides of wafers \rightarrow no peak
 - ICP-MS of wafers \rightarrow few Bq/kg of 238U in aluminum

Diagram:
- Process flow: Etch wafers at Stanford fab facility \rightarrow Assay in SMU UltraLo-1800 \rightarrow Fab sensor pattern at Stanford \rightarrow Assay in SMU UltraLo-1800
- Spectra showing 210Po and uranium alphas.
Sensor Fabrication Test

Goals:
- Validate starting level of ^{210}Pb on detector surfaces
- Validate surface contamination from sensor fabrication

Results:
- Broad 4–5 MeV peak suggests upper-chain ^{238}U alphas
- Precedent from DRIFT → Battat et al., NIM A794 (2015)
- Background concern → ^{234}Th daughter beta decay
- Follow-up measurements:
 - Backsides of wafers → no peak
 - ICP-MS of wafers → few Bq/kg of ^{238}U in aluminum

Not seen on SuperCDMS Soudan detectors
Working with vendor to pre-screen aluminum
Copper Cleaning Test

Goal:
- Validate method for cleaning tower copper parts
 - And thus starting contamination level for detector housings

Methodology:
- Fabricate 2 sets of large-area Cu plates: McMaster & Aurubis OFHC (alloy 101)
- Mill off >1 mm from all surfaces to simulate parts fabrication
- Clean w/ PNNL acidified-peroxide etching recipe
- Use SMU UltraLo-1800 to measure surface alphas

UltraLo-1800 Background not Subtracted (≈25 nBq/cm\(^2\) in \(^{210}\)Po ROI)
Copper Cleaning Test

Goal:
- Validate method for cleaning tower copper parts
 - And thus starting contamination level for detector housings

Methodology:
- Fabricate 2 sets of large-area Cu plates: McMaster & Aurubis OFHC (alloy 101)
- Mill off >1 mm from all surfaces to simulate parts fabrication
- Clean w/ PNNL acidified-peroxide etching recipe
- Use SMU UltraLo-1800 to measure surface alphas

Anticipate <100 nBq/cm² ²¹⁰Pb (>10x better than Soudan)
Summary

Radon is an important background consideration for SuperCDMS SNOLAB
- 210Pb within line-of-sight of detectors is a potentially dominant background

Estimate of 210Pb from plate-out:
- Detector faces/sidewalls: 50/80 nBq/cm2
- Copper housings: <10 nBq/cm2

Low-radon cleanroom for installation at SNOLAB mitigates plate-out by \approx2x
- SDSM&T VSA demonstrates >1000x radon reduction

Validation of critical processes:
- Contamination during crystal polishing negligible
- Discovered uranium in detector-sensor aluminum \rightarrow working with vendor to eliminate
- Demonstrated copper surfaces with <100 nBq/cm2 210Pb via PNNL acidified-peroxide etch
Radon is an important background consideration for SuperCDMS SNOLAB

- ^{210}Pb within line-of-sight of detectors is a potentially dominant background

Estimate of ^{210}Pb from plate-out:

- Detector faces/sidewalls: 50/80 nBq/cm2
- Copper housings: <10 nBq/cm2

Low-radon cleanroom for installation at SNOLAB mitigates plate-out by $\approx 2x$

- SDSM&T VSA demonstrates $>1000x$ radon reduction

Validation of critical processes:

- Contamination during crystal polishing negligible
- Discovered uranium in detector-sensor aluminum \rightarrow working with vendor to eliminate
- Demonstrated copper surfaces with <100 nBq/cm2 ^{210}Pb via PNNL acidified-peroxide etch
Crystal Polishing Test

Goal:
- Validate 210Pb contamination rate during polishing

Methodology:
- Seven 100 mm Si wafers as proxy for detector surfaces
- UltraLo-1800 to measure surface alphas
- 10,000x radon w/ SDSM&T source to boost sensitivity

210Pb surface contamination during polishing insignificant $\rightarrow <1$ nBq/cm2

XIA UltraLo-1800 Spectra (SMU)

Pre-Process
- <200 nBq/cm2
 - clean enough for test

Post-Process
- <100 nBq/cm2
 - Cleaner!
 - Mild etch from slurry solution