

SuperCDMS & Radon

Ray Bunker

Topics in Astroparticle and Underground Physics July 26, 2017

Non-line-of-sight (penetrating) Backgrounds:

Non-line-of-sight (penetrating) Backgrounds: Electron recoils:

→ ²¹⁰Bi bremsstrahlung

(limit exposure of surfaces to radon)

ightarrow ²¹⁴Pb & ²¹⁴Bi gamma-rays

(purge lead shield with low-Rn gas)

Non-line-of-sight (penetrating) Backgrounds: Electron recoils:

→ ²¹⁰Bi bremsstrahlung

(limit exposure of surfaces to radon)

 \rightarrow ²¹⁴Pb & ²¹⁴Bi gamma-rays

(purge lead shield with low-Rn gas)

Nuclear Recoils:

→ ²¹⁰Po (α ,n) on ¹³C in poly

(limit exposure of surfaces to radon)

SNOLAB Detector Backgrounds 10^{4} 32**Si Betas** Photons ²⁰⁶Pb recoils 32**p** Solar neutrinos Neutrons 10⁻⁴ 10⁰ 10-1 10¹ 10^{2} Recoil Energy (keV) Non-line-of-sight **Radon Background** <1% of Total Nuclear Recoil

Line-of-sight (non-penetrating) Backgrounds:

222 3.82 d Rn **Radon Decay Chain** α 3.1 m Po Po Po 138 d 214 Bi 210 Bi α α Pb β 83 27 m Pb 20 m Pb 82

Line-of-sight (non-penetrating) Backgrounds: Electron recoils:

 \rightarrow ²¹⁰Pb & ²¹⁰Bi betas and x-rays

Line-of-sight (non-penetrating) Backgrounds: Electron recoils:

 \rightarrow ²¹⁰Pb & ²¹⁰Bi betas and x-rays

Nuclear Recoils:

 \rightarrow ²⁰⁶Pb recoils from ²¹⁰Po decays

Detector-surface Backgrounds

Line-of-sight (non-penetrating) Backgrounds:

Electron recoils:

 \rightarrow ²¹⁰Pb & ²¹⁰Bi betas and x-rays

Nuclear Recoils:

 \rightarrow ²⁰⁶Pb recoils from ²¹⁰Po decays

Potentially dominant backgrounds unless:

- Detector/copper surfaces clean at start
- And protected from radon thereafter

Detector-surface Backgrounds

SNOLAB Detector Backgrounds 10^{4} 32**Si Betas** Photons ²⁰⁶Pb recoils 32**p** Solar neutrinos Neutrons 10^{-4} 10⁰ 10-1 10¹ 10^{2}

Recoil Energy (keV)

Calls for dedicated background controls:

- I. Limit exposure to radon during payload lifecycle
- II. Dedicated low-radon cleanroom at SNOLAB
- III. Validate cleanliness of critical processes

Payload Lifecycle & Radon Exposure

Procedure	²¹⁰Pb (nBq/cm ²)
#1 – storage	<0.1
# 2 – polishing	12–45
#3 – fabrication	28
#4 – packaging	4.8
#5 – tower assembly	0.9
#6 – testing	1.1
# 7 — installation (w/ 1000x Rn mitigation)	<0.1
# 7 — installation (w/o Rn mitigation)	70

Payload Lifecycle & Radon Exposure

²¹⁰Pb from Rn exposure (conservative plate-out tally): <u>Detector surfaces</u>: 47–80 nBq/cm² Assume worst for sidewalls → 80 nBq/cm² Sensor fab removes surface area on faces → 50 nBq/cm² Copper surfaces: <10 nBq/cm²

Procedure	²¹⁰Pb (nBq/cm ²)
#1 – storage	<0.1
#2 – polishing	12–45
#3 – fabrication	28
#4 – packaging	4.8
#5 – tower assembly	0.9
# 6 – testing	1.1
#7 — installation (w/ 1000x Rn mitigation)	<0.1
# 7 — installation (w/o Rn mitigation)	70

Payload Lifecycle & Radon Exposure

²¹⁰Pb from Rn exposure (conservative plate-out tally):

<u>Detector surfaces</u>: 47–80 nBq/cm² Assume worst for sidewalls → 80 nBq/cm² Sensor fab removes surface area on faces → 50 nBq/cm² <u>Copper surfaces</u>: <10 nBq/cm²

Plate-out ≈2x larger without low-radon cleanroom

Procedure	²¹⁰Pb (nBq/cm ²)
#1 — storage	<0.1
#2 – polishing	12–45
#3 – fabrication	28
# 4 – packaging	4.8
#5 – tower assembly	0.9
#6 – testing	1.1
# 7 — installation (w/ 1000x Rn mitigation)	<0.1
#7 — installation (w/o Rn mitigation)	70

Low-radon Cleanroom @ SNOLAB via Vacuum-Swing Adsorption (VSA)

Proudly Operated by Battelle Since 1965

Demonstration VSA @ SDSM&T

Proudly Operated by Battelle Since 1965

Demonstration VSA @ SDSM&T

Validation of Critical Processes

Proudly Operated by **Battelle** Since 1965

Bottom-up estimate of ²¹⁰Pb plate-out from radon exposure in air: <u>Detector surfaces</u>: 50/80 nBq/cm² for faces/sidewalls <u>Tower-copper surfaces</u>: <10 nBq/cm²

But doesn't include:

Initial level of surface contamination

→ do surfaces start clean?

Contamination directly from fabrication processes

(e.g., chemical contact)

R&D tests to validate critical processes: Detector surfaces → crystal polishing & sensor fabrication Copper surfaces → cleaning method

e in air: ┥	-Σ ↑
Procedure	²¹⁰ Pb (nBq/cm²)
# 1 — storage	<0.1
# 2 – polishing	12–45
# 3 — fabrication	28
# 4 — packaging	4.8
# 5 – tower assembly	0.9
# 6 – testing	1.1
# 7 — installation (w/ 1000x Rn mitigation)	<0.1
#7 - Installation	70
(m/ immitigation)	

Sensor Fabrication Test

Assay in SMU

UltraLo-1800

40 nm pc-Si

Follow-up measurements:

Backsides of wafers \rightarrow no peak

Validate starting level of ²¹⁰Pb on detector surfaces

Validate surface contamination from sensor fabrication

Broad 4–5 MeV peak suggests upper-chain ²³⁸U alphas

Precedent from DRIFT \rightarrow Battat et al., NIM A794 (2015)

ICP-MS of wafers \rightarrow few Bq/kg of ²³⁸U in aluminum

Background concern \rightarrow ²³⁴Th daughter beta decay

Fab sensor

pattern at

Stanford

600 nm Al (35%) Si wafer substrate Assay in SMU

UltraLo-1800

40 nm W

Goals:

Etch wafers

at Stanford

fab facility

Results:

XIA UltraLo-1800 Spectra (SMU)

16

Sensor Fabrication Test

Goals:

- Validate starting level of ²¹⁰Pb on detector surfaces
- Validate surface contamination from sensor fabrication

Results:

- Broad 4–5 MeV peak suggests upper-chain ²³⁸U alphas
- ▶ Precedent from DRIFT \rightarrow Battat et al., NIM A794 (2015)
- ▶ Background concern \rightarrow ²³⁴Th daughter beta decay
- Follow-up measurements:
 - Backsides of wafers ightarrow no peak
 - ICP-MS of wafers → few Bq/kg of ²³⁸U in aluminum

Not seen on SuperCDMS Soudan detectors Working with vendor to pre-screen aluminum

XIA UltraLo-1800 Spectra (SMU)

Copper Cleaning Test

Goal:

- Validate method for cleaning tower copper parts
 - And thus starting contamination level for detector housings

Methodology:

- Fabricate 2 sets of large-area Cu plates: McMaster & Aurubis OFHC (alloy 101)
- Mill off >1 mm from all surfaces to simulate parts fabrication
- Clean w/ PNNL acidified-peroxide etching recipe
- Use SMU UltraLo-1800 to measure surface alphas

UltraLo-1800 Background not Subtracted (~25 nBq/cm² in ²¹⁰Po ROI)

Copper Cleaning Test

Goal:

- Validate method for cleaning tower copper parts
 - And thus starting contamination level for detector housings

Methodology:

- Fabricate 2 sets of large-area Cu plates: McMaster & Aurubis OFHC (alloy 101)
- Mill off >1 mm from all surfaces to simulate parts fabrication
- Clean w/ PNNL acidified-peroxide etching recipe
- Use SMU UltraLo-1800 to measure surface alphas

1st Test Sample

Summary

Proudly Operated by Battelle Since 1965

Radon is an important background consideration for SuperCDMS SNOLAB

²¹⁰Pb within line-of-sight of detectors is a potentially dominant background

Estimate of ²¹⁰Pb from plate-out:

Detector faces/sidewalls: 50/80 nBq/cm²

Copper housings: <10 nBq/cm²

Low-radon cleanroom for installation

at SNOLAB mitigates plate-out by ≈2x SDSM&T VSA demonstrates >1000x radon reduction

Validation of critical processes:

- Contamination during crystal polishing negligible
- Discovered uranium in detector-sensor aluminum \rightarrow working with vendor to eliminate
- Demonstrated copper surfaces with <100 nBq/cm² ²¹⁰Pb via PNNL acidified-peroxide etch

Summary

Radon is an important background consideration for SuperCDMS SNOLAB

²¹⁰Pb within line-of-sight of detectors is a potentially dominant background

Estimate of ²¹⁰Pb from plate-out:

Detector faces/sidewalls: 50/80 nBq/cm²
Copper housings: <10 nBq/cm²

Low-radon cleanroom for installation at SNOLAB mitigates plate-out by ≈2x

SDSM&T VSA demonstrates >1000x radon reduction

Validation of critical processes:

- Contamination during crystal polishing negligible
- Discovered uranium in detector-sensor aluminum → working with vendor to eliminate
- Demonstrated copper surfaces with <100 nBq/cm² ²¹⁰Pb via PNNL acidified-peroxide etch

Demonstrated ²¹⁰Pb at sidewalls: detector + copper <200 nBq/cm²

Goal:

Validate ²¹⁰Pb contamination rate during polishing

Methodology:

- Seven 100 mm Si wafers as proxy for detector surfaces
- UltraLo-1800 to measure surface alphas
- 10,000x radon w/ SDSM&T source to boost sensitivity

²¹⁰Pb surface contamination during polishing insignificant \rightarrow <1 nBq/cm²

XIA UltraLo-1800 Spectra (SMU)

