PROSPECT

Precision Oscillation and Spectrum Experiment

Karsten M. Heeger Yale University

on behalf of the PROSPECT collaboration

Reactor Antineutrinos

\overline{v}_{e} from β -decays, pure \overline{v}_{e} source

of n-rich fission products on average ~6 beta decays until stable

> 99.9% of \overline{v}_{e} are produced by fissions in ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

mean energy of \overline{v}_e : 3.6 MeV

only disappearance experiments possible

Reactor Antineutrino "Anomalies"

Flux Deficit

Consistent with previous experiments

Extra (sterile) neutrino oscillations or artifact of flux predictions?

Understanding reactor flux and spectrum anomalies requires additional data

Spectral Deviation

Measured spectrum does not agree with predictions.

Phys. Rev D 95, 072006 (2017). Daya Bay collaboration

Recent Developments

Daya Bay recently reported IBD yields of ²³⁵U and ²³⁹Pu using evolution of LEU reactors. Reactor flux model found to be incorrect for ²³⁵U.

Analysis of Daya Bay with Fuel Burnup Hayes et al, arXiv:1707.07728

IBD yields calculated from reactor rates (of 26 reactor experiments) do not agree with Daya Bay measurement.

"not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos"

$\overline{\mathbf{v}}_{e}$ Disappearance and Oscillation Searches

Reactor $\overline{v_e}$ measurements

$\overline{v_e}$ disappearance data

TAUP2017, July 25, 2017

Precision Reactor and Oscillation Experiment

Segmented, ⁶Li-loaded Movable Detector

unoscillated spectrum

oscillated spectrum

Detector Design

⁶Li liquid scintillator ~4 ton minimum dead material movable detector layered shielding package

Segmented Detector

14x11 segments double-ended PMT readout light guides, 5" PMTs ~ $4.5\%/\sqrt{E}$ resolution Relative Spectrum Measurement relative measurement of L/E and spectral shape distortions

PROSPECT Physics

A Precision Oscillation Experiment

Model-independent test of oscillation of eV-scale neutrinos

4σ test of best fit after 1 year >3σ test of favored region after 3 years

PROSPECT Physics

Improvement on ILL

Testing models of $^{235}Uv_e$ spectrum

Antineutrinos from Reactors

High-powered research reactors

highly-enriched (HEU): mainly ²³⁵U, ~10-100 MW_{th},

Commercial power reactors

low-enriched (LEU): many fission isotopes, ~GW_{th}

Karsten Heeger, Yale University

"Point Source" vs Extended Core

HEU core provides static spectrum of ²³⁵U

Experimental Site

Access Established on-site operation User facility, easy 24/7 access

Reactor Core Power: 85 MW Core shape: cylindrical Size: h=0.5m r=0.2m Duty-cycle: 41% Fuel: HEU (²³⁵U)

PROSPECT Detector and Shielding Development

PROSPECT-0.1 Characterize LS Aug 2014-Spring 2015

PROSPECT-2 12.5 Background studies Dec 2014 - Aug 2015

12.5 cm length s 1.7 liters ⁶LiLS

1m length

LS, ⁶LiLS

23 liters

multi-layer shielding

PROSPECT-20 Segment characterization Scintillator studies Background studies Spring/Summer 2015

PROSPECT-50 *Baseline design prototype* Winter 2015

1x2 segments 1.2m length 50 liters ⁶LiLS

PROSPECT

Antineutrino Event Identification with ⁶Li

Inverse Beta Decay

Prompt signal: 1-10 MeV positron from inverse beta decay (IBD)

Delay signal: ~0.5 MeV signal from neutron capture on ⁶Li

40µs delayed n capture

Background Reduction

detector design & fiducialization

IBD event in segmented ⁶LiLS detector

signal inverse beta decay (IBD) γ-like prompt, n-like delay

backgrounds fast neutron n-like prompt, n-like delay

> accidental gamma γ-like prompt, γ-like delay

Background reduction is key challenge

Pulse Shape Discrimination

Inner Detector Components

⁶Li-Loaded Liquid Scintillator

Developed non-toxic, nonflammable formulation based on EJ-309

Light Yield

• EJ-309 base:

11500 ph/MeV

Excellent PSD

• LiLS: 8200 ph/MeV

0.1% ⁶Li loading

performance for neutron

capture & heavy recoils

Low-Mass Optical Separators

14.4 cn

High reflectivity, highrigidity, low mass reflector system developed

grid of calibration positions

Calibration

Karsten Heeger, Yale University

E

6

Backgrounds & Shield Design

On-site Measurements

Characterize background field at HFIR, develop localized shielding requirements PROSPECT Collaboration Nucl. Instrum. Meth. A806 (2016) 401–419

Localized shielding studies

Reactor On/Off Studies

PROSPECT Shielding

local shielding next to reactor wall multi-layer passive shield:

• water bricks, HDPE, borated HDPE, lead

Background Rejection via Segmentation

Segmentation

Fiducialization

Background Reduction Steps

Efficient PSD and neutron tagging Identification of multiple particle interactions

Fiducialization: Active suppression by >3 orders of magnitude

Prompt Spectrum ~940 IBD events/day

Rate and shape of residual IBD-like background measured during reactor-off periods.

projected S:B is 3:1

Prototyping and Detector Assembly

Karsten Heeger, Yale University

TAUP2017, July 25, 2017

Preparing Detector Assembly

PROSPECT Collaboration

4 national laboratories 10 universities 68 collaborators

prospect.yale.edu

Summary & Outlook

PROSPECT aims to resolve current reactor anomalies

- probe favored region for eV-scale sterile neutrinos at $>3\sigma$ within 3 years
- measure the ${}^{235}U \overline{v}_{e}$ spectrum, complementary to LEU measurements

New data from HEU reactors are required to address the reactor rate and spectrum anomalies.

PROSPECT R&D program

- developed LiLS detector technology that can mitigate reactor- and cosmogenic related backgrounds
- deployed multiple detectors at HFIR to validate models and prepare for full-size system deployment

PROSPECT proceeding with detector construction. Installation in 2017.

