

Proudly Operated by **Battelle** Since 1965

Backgrounds in the planned SuperCDMS SNOLAB dark matter experiment

JOHN L. ORRELL, ON BEHALF OF THE SUPERCOMS COLLABORATION

15th International Conference on Topics in Astroparticle and Underground Physics SNOLAB, Sudbury, Ontario, Canada July 24-28, 2017

TAUP 2017

SuperCDMS SNOLAB sensitivity reach

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Anticipated background spectra (Ge HV)

HV detectors – High-voltage assisted phonon measurement of ionization

Event rates after response & cuts

Pacific Northwes

Anticipated background spectra (Ge iZIP)

iZIP detectors – Interleaved z-dependent ionization and phonon sensors

Event rates after response & cuts

Pacific Northwes

Anticipated dominant backgrounds

Evaluation of background spectra on prior slides (and in backup) reveals the following anticipated primary background sources...

- In lowest WIMP mass range (~1 GeV/c²):
 - Line-of-sight surface emissions on HV detectors:
 - ²¹⁰Pb daughters on surfaces \rightarrow Low-energy surface-event fiducial-cut leakage
- ▶ In middle WIMP mass range (~2 to ~5 GeV/ c^2):
 - Electron recoil backgrounds in HV detectors:
 - Cosmogenic tritium (³H) $\rightarrow \beta$ -decay electron recoil
 - Naturally occurring ³²Si $\rightarrow \beta$ -decay electron recoil
 - U & Th daughters in materials $\rightarrow \gamma$ -ray Compton scattering electron recoils
- In higher WIMP mass range (~5 to ~10 GeV/c²):
 - Nuclear recoil backgrounds are identifiable with iZIPs:
 - Solar neutrinos → Coherent neutrino-nucleus scattering
 - Muon produced neutrons → Neutron nuclear recoil background

These backgrounds not discussed in detail in this presentation

TAUP 2017

Backgrounds vs. WIMP mass

- Surface emission background sources
- Electron recoil (ER) background sources
- iZIP detectors discriminate ER vs. NR backgrounds

Pacific Nor

Proudly Operated by **Baffelle** Since 1965

Emission of β-ray, x-ray, or nuclei from surfaces with line-of-sight to detectors can produce background events

Sensor layout enables fiducialization away from surfaces to reject line-of-sight events

HV detector sensor layout

iZIP detector sensor layout

3.82 d Rn

Non-penetrating radiation from ²¹⁰Pb decay chain

High-radius event rejection relies on discerning partition of energy between inner & outer sensors... (model described on next slide)

Model for rejecting surface backgrounds

Fiducialization relies on sufficient energy above signal noise levels, position reconstruction capability is suppressed for small recoil energies

	Volume Fraction			
	E	\mathbf{R}	NR	
Volume Type	\mathbf{Ge}	Si	Ge & Si	
Bulk Events	0.50	0.675	0.85	
Events near the top/bottom faces	0.056	0.075	0.05	
Events near the cylindrical sidewalls	0.444	0.25	0.10	

	η		
Event Location and Type	Ge	Si	
Bulk Events	1.0	1.0	
Events near the top/bottom faces	1.0	1.0	
Events near the cylindrical sidewalls	0.75	0.90	
ERs on the top/bottom faces	0.70	0.65	
ERs on the cylindrical sidewalls	0.525	0.585	
²⁰⁶ Pb recoils on the top/bottom faces	0.65	0.65	
²⁰⁶ Pb recoils on the cylindrical sidewalls	0.488	0.585	

Simple fiducialization model

See "SuperCDMS & Radon" by R. Bunker (Wed. 14:30)

- More detailed surface emission rate evaluations and studies
- Predictions for sensitivity reach vs. achieved surface background levels

Electron recoil background sources

Pacific Northwes

Electron recoil background sources

Proudly Operated by Battelle Since 1965

- Naturally occurring ³²Si is a nuclear spallation product from cosmic ray interactions with atmospheric ⁴⁰Ar
 - Reported by DAMIC -
- ³²Si levels in silicon "ore" may vary due to local geology & precipitation
- SuperCDMS SNOLAB projections for ³²Si based on DAMIC levels

Electron recoil background sources

Comparison background singles event rate in crystal bulk

Energy range used for tabulation $ ightarrow$	<u>0.003 – 2</u>	<u>2 keVee</u>	<u>1-50</u>	keVee	<u>1 - 50</u>) keVnr	FETCard Stage3
Background Category	${\rm GeHV}$	${ m SiHV}$	GeiZIP	SiiZIP	GeiZIP	SiiZIP	Stage2
for events in the detector bulk	(ER)	(ER)	(ER)	(ER)	(NR)	(NR)	CoaxJoint Stage1
	~ /				$\times 10^{-6}$	$\times 10^{-6}$	TowerSideCoax
Total Rate (counts/keV/kg/year)	43.	340.	33.	350.	3400.	2800.	ShuntBoard StackFlexCable
1. Coherent Neutrinos					2300.	1600.	StackSideCoax Zip
2. Detector Internal Contamination	24.	280.	4.7	250.			FlexCover - FlexConnector
Tritium (³ H)	24.	33.	4.7^{*}	6.6			CoaxConnector
³² Si		250.		250.			DIBConnector/ BottomLid
3. Material Internal Contamination	12.	35.	18.	58.	400.	440.	
Housing and Towers	2.5	8.3	3.9	13.	39.	48.	
SNOBOX Cans	3.9	12.	6.2	21.	120.	76.	
Kevlar Ropes	2.1	5.1	2.7	8.3	3.6	4.0	backgrounds
Shield Materials	3.5	10.	5.3	17.	240.	310.	(y-ray compton)
Bulk ²¹⁰ Pb in Lead	0.44	1.8	0.64	1.5			simulated
4. Material Internal Activation	2.1	7.9	3.7	13.			WITHIN GEAN I
Housing and Towers	0.58	2.3	0.92	3.8			
SNOBOX	1.5	5.6	2.8	8.9			
5. Surfaces (non-line-of-sight)	1.7	5.1	3.6	12.	63.	42.	
Dust	1.4	3.8	2.2	6.7	63.	42.	
Pb-210 (Radon daughter)	0.33	1.3	1.4	5.1	0.45	0.76	
6. Prompt Interstitial Radon	0.61	1.8	0.87	2.7		J	
7. Cavern Environment	2.3	3.5	2.0	9.6	300 .	350.	
8. Cosmogenic Neutrons					320 .	480 .	July 25, 2017 11

CDM

Summary

SuperCDMS SNOLAB

- Direct detection search for low-mass WIMP dark matter
- Anticipate a background-limited search
- Major classes of anticipated background sources:
 - ²¹⁰Pb daughters \rightarrow Low-energy surface-event fiducial-cut leakage
 - **Cosmogenic tritium** (³H) $\rightarrow \beta$ -decay electron recoil
 - **Naturally occurring** ³²Si $\rightarrow \beta$ -decay electron recoil
 - Material U & Th chains $\rightarrow \gamma$ -ray Compton scattering electron recoils
- Total sensitivity reach in WIMP-nucleon cross-section O(10⁻⁴³ cm²)
- Complementary of HV & iZIP detectors with material screening program provides information to constrain and fit anticipated backgrounds

SuperCDMS Collaboration

California Institute of Technology **CNRS/LPN** Fermi National Accelerator Laboratory NISFR Pacific Northwest National Laboratory Santa Clara University South Dakota School of Mines & Technology **SNOLAB** Southern Methodist University Texas A&M University of California, Berkeley University of Colorado Denver University of Florida University of South Dakota

Durham University Northwestern University Queen's University SLAC/KIPA NIST Laurentian University Stanford University University of British Columbia TRIUMF University of Evansville University of Minnesota University of Toronto

Anticipated background spectra (Ge HV)

HV detectors – High-voltage assisted phonon measurement of ionization

Event rates after response & cuts

Pacific Northwes

Anticipated background spectra (Si HV)

HV detectors – High-voltage assisted phonon measurement of ionization

Raw singles event rates

Event rates after response & cuts

15

Pacific Northwes

Anticipated background spectra (Ge iZIP)

iZIP detectors – Interleaved z-dependent ionization and phonon sensors

Pacific Northwes

Anticipated background spectra (Si iZIP)

iZIP detectors – Interleaved z-dependent ionization and phonon sensors

Raw singles event rates

Event rates after response & cuts

17

Pacific Northwes

