Spectral analysis for the MAJORANA DEMONSTRATOR experiment

Lukas Hehn
Institute for Nuclear and Particle Astrophysics

TAUP2017
July 25th, Sudbury (Canada)
The MAJORANA DEMONSTRATOR

Funded by DOE Office of Nuclear Physics, NSF Particle Astrophysics, NSF Nuclear Physics with additional contributions from international collaborators.

Goals: - Demonstrate backgrounds low enough to justify building a tonne scale experiment.
- Establish feasibility to construct & field modular arrays of Ge detectors.
- Searches for additional physics beyond the standard model.

- Operating underground at 4850’ Sanford Underground Research Facility
- Background Goal in the $0\nu\beta\beta$ peak region of interest (4 keV at 2039 keV)
 3 counts/ROI/t/y (after analysis cuts) Assay U.L. currently ≤ 3.5

- 44.1-kg of Ge detectors
 - 29.7 kg of 87% enriched 76Ge crystals
 - 14.4 kg of natGe
 - Detector Technology: P-type, point-contact.

- 2 independent cryostats
 - ultra-clean, electroformed Cu
 - 22 kg of detectors per cryostat
 - naturally scalable

- Compact Shield
 - low-background passive Cu and Pb shield with active muon veto
MAJORANA data sets

<table>
<thead>
<tr>
<th></th>
<th>DS0 (days)</th>
<th>DS1 (days)</th>
<th>DS2 (days)</th>
<th>DS3 (days)</th>
<th>DS4 (days)</th>
<th>DS5 (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Module 1</td>
<td>Module 1</td>
<td>Module 1</td>
<td>Module 1</td>
<td>Module 2</td>
<td>Module 1 & 2</td>
</tr>
<tr>
<td>Total</td>
<td>103.15</td>
<td>144.50</td>
<td>50.97</td>
<td>32.37</td>
<td>32.36</td>
<td>147.68</td>
</tr>
<tr>
<td>Total acquired</td>
<td>87.93</td>
<td>136.98</td>
<td>50.47</td>
<td>31.73</td>
<td>25.80</td>
<td>137.42</td>
</tr>
<tr>
<td>Physics</td>
<td>47.70</td>
<td>61.34 + 20.41*</td>
<td>9.82 + 30.56*</td>
<td>29.91</td>
<td>23.69</td>
<td>119.38</td>
</tr>
<tr>
<td>High radon</td>
<td>11.76</td>
<td>7.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Disruptive Activities</td>
<td>13.10</td>
<td>34.43 + 5.92*</td>
<td>2.41 + 7.03*</td>
<td>0.63</td>
<td>0.93</td>
<td>15.68</td>
</tr>
<tr>
<td>Calibration</td>
<td>15.44</td>
<td>7.32</td>
<td>0.65</td>
<td>1.18</td>
<td>1.17</td>
<td>2.36</td>
</tr>
<tr>
<td>Down time</td>
<td>15.21</td>
<td>7.51</td>
<td>0.50</td>
<td>0.64</td>
<td>6.56</td>
<td>10.25</td>
</tr>
</tbody>
</table>

*Values thru 03/10/17

Currently taking blind data in DS6 with multi-sampling
Physics searches with (enriched) Ge-detectors

around 2039 keV

Data Set 3 + 4
1.39 kg-y

after Delayed Charge Recovery α-cut:
1 event in 400 keV window
→ BI = 1.8 \times 10^{-3} \text{ cnts / (keV\cdot kg\cdot y)}
Statistical methods for $0\nu\beta\beta$-search

variety of statistical methods used to search for a signal:

Frequentist

- **Feldman-Cousins** \textit{MJD, Neutrino 2016}

eliminates flip-flop problem (exclusion vs. discovery)

possible significant over-coverage

- **profile likelihood**

systematic uncertainties & constraints taken into account

simultaneous treatment of multiple datasets

large-sample case: Wilks’ theorem \textit{EXO200, Nature 2014}

small sample case (~10 events): Monte Carlo toy data \textit{GERDA, Nature 2017}

also as modified (“CLs”) method against down-fluctuations of background \textit{NEMO-3, PRD 2016}

Bayesian

different definition of probability \textit{CUORE0, PRL 2015}

needs prior for unknown parameters
Minimal signal + background likelihood model

- likelihood function for each dataset (based on GERDA, Nature 2017)

\[
\mathcal{L}(D|S, BI, \theta) = \prod_{n=1}^{N_{\text{obs}}} \frac{1}{\mu^S_n + \mu^B_n} \cdot \left[\mu^S_n \cdot \frac{1}{\sqrt{2\pi}\sigma} \exp \left(\frac{-(E_n - Q_{\beta\beta} - \delta)^2}{2\sigma^2} \right) + \mu^B_n \cdot \frac{1}{\Delta E} \right]
\]

- Gaussian signal
- flat background

signal rate: \(\mu^S = \ln 2 \cdot (N_A/m_a) \cdot \epsilon \cdot \mathcal{E} \cdot S \) where \(S = (T_{1/2})^{-1} \)

bkg-rate: \(\mu^B = \mathcal{E} \cdot BI \cdot \Delta E \)

constrained nuisance parameter: \(\theta = \{\epsilon, \sigma, \delta\} \)

- simultaneous fit of multiple datasets \(i \)

\[
\mathcal{L}(D|S, BI, \theta_i) = \prod_i \left[\frac{e^{-(\mu^S_i + \mu^B_i)} \cdot (\mu^S_i + \mu^B_i)^{N_{\text{obs}}^i}}{N_{\text{obs}}^i!} \cdot \mathcal{L}_i(D_i|S, BI_i, \theta_i) \right]
\]
Validation of analysis code with GERDA data

Goal: testing of statistical analysis code (based on RooStats \textit{arXiv:1009.1003}) with well studied data from \textit{GERDA, Nature 2017}

\begin{itemize}
\item Published data
\item Published model parameters
\end{itemize}

\begin{table}
\caption{List of data sets, exposures (for total mass), energy resolutions in FWHM, efficiencies (including enrichment, active mass, reconstruction efficiencies and dead times) and background indices (BI) in the analysis window.}
\begin{tabular}{lllll}
\hline
\text{data set} & \text{exposure} & \text{FWHM} & \text{efficiency} & \text{BI} \\
& [kg\text{yr}] & [keV] & & 10^{-3}cts/(keV kg yr) \\
\hline
PI golden & 17.9 & 4.3(1) & 0.57(3) & 11 \pm 2 \\
PI silver & 1.3 & 4.3(1) & 0.57(3) & 30 \pm 10 \\
PI BEGe & 2.4 & 2.7(2) & 0.66(2) & 5^{+4}_{-3} \\
PI extra & 1.9 & 4.2(2) & 0.58(4) & 5^{+4}_{-3} \\
PIIa coaxial & 5.0 & 4.0(2) & 0.53(5) & $3.5^{+2}_{-1.5}$ \\
PIIa BEGe & 5.8 & 3.0(2) & 0.60(2) & $0.7^{+1}_{-0.5}$ \\
\hline
\end{tabular}
\end{table}

→ reconstruction of 6 unbinned datasets

nearly full reconstruction of likelihood model
Deriving upper limits using hypothesis tests

- hypothesis tests performed for a assumed signal strength S_j
- two-sided test statistic t_{sj} is based on Profile Likelihood Ratio
- generated MC toy datasets:
 100,000 S_j + Background
 20,000 B-only
- p-value of test statistic observed data: $p_{S_j} = 0.10$
- p-value of B-only distribution median: $p_{B-only} = 0.34$

$S_j = 0.19 \left(T_{1/2} = 5.2 \cdot 10^{25} \text{ y}\right)$

\[
p_{S_j} = \int_{t_{obs}}^{\infty} f(t_S|S_j) \, dt_S
\]
Test: Reproduction of GERDA $0\nu\beta\beta$ exclusion limit

- hypothesis test performed for increasing values of S_j
- observed limit at 90% C.L. when:
 \[p'_{S_j} \leq 0.1 \]

- w/ actual GERDA data
- but w/o all correlation terms:
 RooStats code reproduces official limits to ~ 2% accuracy ✔

<table>
<thead>
<tr>
<th>analysis</th>
<th>μ_S (counts)</th>
<th>$T_{1/2}$ (10^{25} yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>official</td>
<td>2.0</td>
<td>5.3 (4.0)</td>
</tr>
<tr>
<td>reproduced</td>
<td>2.10 ± 0.01 (2.77)</td>
<td>5.19 ± 0.03 (3.94)</td>
</tr>
</tbody>
</table>

- test statistics in limit cases
 (e.g. test statistic of empty toy data sets?)
Application to MAJORANA toy data set

- efforts have been undertaken to optimize selection of physics data from DS0 to DS5 (improved cuts & data quality selection → poster J. Myslik)

- results based on this data: ongoing process of internal collaboration review
to demonstrate method:

single B-only toy data set with based on DS3+4 background index & typical parameter values

<table>
<thead>
<tr>
<th>model parameter</th>
<th>model value</th>
</tr>
</thead>
<tbody>
<tr>
<td>background index BI (cnts/(kg·y·keV))</td>
<td>$1.8 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>exposure (kg·y)</td>
<td>$10 \pm 2%$</td>
</tr>
<tr>
<td>FWHM ($\rightarrow \sigma$)</td>
<td>$2.35 \pm 1%$</td>
</tr>
<tr>
<td>efficiency ε</td>
<td>$0.59 \pm 10%$</td>
</tr>
<tr>
<td>E-shift δ (keV)</td>
<td>0 ± 0.2</td>
</tr>
</tbody>
</table>
Exclusion limit and sensitivity from toy data set

- **B-only** toy dataset
 - no fitted signal
 - all nuisance parameters at expected values
- Median sensitivity: \(T_{1/2} > 1.8 \cdot 10^{25} \) yr
- (standard) profile likelihood method: significantly stricter limits than Feldman-Cousins

<table>
<thead>
<tr>
<th>method</th>
<th>(\mu_S) (counts)</th>
<th>(T_{1/2}) (10^{25} yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td>1.79 (1.8)</td>
<td>1.81 (1.8)</td>
</tr>
<tr>
<td>CLs</td>
<td>2.54 (2.5)</td>
<td>1.28 (1.3)</td>
</tr>
</tbody>
</table>
Conclusion & Outlook

● analysis of $0\nu\beta\beta$-search with non-blinded data from DS0–5 is nearing completion
● data taking with full shielding and both cryostat modules ongoing
● additional blinded data available and blinding scheme in effect for all new data