Cosmogenic Activation of Germanium Detectors in EDELWEISS III

Astropart. Phys. 91 (2017) 51-64

Silvia Scorza

SNALAB

XV International Conference on Topics in Astroparticle and Underground Physics July 2017

Background

Rare search event experiment: small expected rate and radioactive background of most of the material gives higher rate

Very low background environment is needed

Background sources:

- Cosmic rays -> deep underground sites and muon veto
- Natural radioactivity (²³⁸U, ²³²Th, ⁴⁰K) γ, e⁻, β, n, α -> passive/active shielding
- Intrinsic sources (²²²Rn, long and medium-lived cosmogenic products of target material)
- Ultimately: neutrino-nucleus scattering (solar, atmospheric and supernovae neutrinos)

Background

Rare search event experiment: small expected rate and radioactive background of most of the material gives higher rate

Very low background environment is needed

Background sources:

- Cosmic rays -> deep underground sites and muon veto
- Natural radioactivity (²³⁸U, ²³²Th, ⁴⁰K) γ, e⁻, β, n, α -> passive/active shielding
- Intrinsic sources (²²²Rn, long and medium-lived cosmogenic products of target material)
- Ultimately: neutrino-nucleus scattering (solar, atmospheric and supernovae neutrinos)

It can not be removed once detector is contaminated

Activation at Sea-Level

Decay rate of a radioactive isotope depends on the time of material exposure to the source of radiation (t_{exp}) and on the time the isotopes were allowed to decay without being exposed to cosmic rays (t_{dec}).

Production rate P of induced isotopes:

$$P_i = \sum_j N_j \int \phi(E) \sigma_{ij}(E) dE$$

E = energy

 σ = production cross section

 ϕ = cosmic neutron flux

 N_j = number of target nuclear isotope j

Activation at Sea-Level

Decay rate of a radioactive isotope depends on the time of material exposure to the source of radiation (t_{exp}) and on the time the isotopes were allowed to decay without being exposed to cosmic rays (t_{dec}).

$$\frac{dN}{dt} = P \times \left(1 - e^{\frac{-t_{exp}}{\tau}}\right) \cdot \left(e^{\frac{-t_{dec}}{\tau}}\right)$$
decay rate
saturation fraction

Production rate P of induced isotopes:

$$P_i = \sum_j N_j \int \phi(E) \sigma_{ij}(E) dE$$

Different input cosmic-ray neutron spectra, can lead to a variation in production rates of about 20-30%

Activation at Sea-Level

Decay rate of a radioactive isotope depends on the time of material exposure to the source of radiation (t_{exp}) and on the time the isotopes were allowed to decay without being exposed to cosmic rays (t_{dec}).

$$\frac{dN}{dt} = P \times \left(1 - e^{\frac{-t_{exp}}{\tau}}\right) \cdot \left(e^{\frac{-t_{dec}}{\tau}}\right)$$
decay rate
saturation fraction

Production rate P of induced isotopes:

$$P_i = \sum_j N_j \int \phi(E) \sigma_{ij}(E) dE$$

Excitation functions may account for up to a factor of 2 difference in the production rate of 68Ge. The difference increases with the atomic number of the isotope produced.

R308 Analysis

FID Ge crystals: event ID from measurements of ionization and phonon energies

- 280 days July14 April 15: 160 days WS data
- 24 FIDs for coincidence study
 - 19/24 FIDs selected with > 2 days (13 detectors in production rate interpretation)
- Exposure of 1853 det days
- Hourly online threshold <2 keV
- Ionization resolution <400eV
- Chi-2 selection pulse template reconstruction
 - Efficiency loss <1%
- Fiducial selection
 - Clean sample, no surface leakage

R308 Analysis

FID Ge crystals: event ID from measurements of ionization and phonon energies

R308 Analysis

FID Ge crystals: event ID from measurements of ionization and phonon energies

TAUP 2017

TAUP 2017

Good correlation history vs decay rate

Strong tension @5.9σ (stat) with previous measurement Avignone et al. Agreement < 2σ with ACTIVIA calculation

Model estimates from P=34.4 to P=79 nuclei/kg/day

Tritium

Relative error bars of the decay rate are more important

IGEX upper limit in tension with any estimates

Agreement < 20 with ACTIVIA calculations

Model estimates difference up to one order of magnitude

Cosmogenic Activation of Germanium Detectors in EDELWEISS III

Summary

	This work		Cebrian		Barabanov Mei		Zhang	Klapdor	Avignone	
	Exp.	Calc.	(Ziegler)	(Gordon)						Exp.
${}^{3}\mathbf{H}$	$82{\pm}21$	$46_{(a)}$				27.7	48.3 (I)	210	210	
		43.5(b)				$<\!\!21_{\rm (E)}$	52.4 (II)		210	
$^{49}\mathbf{V}$	$2.8{\pm}0.6$	$1.9_{\rm (a,b)}$								
65 Zn	$106{\pm}13$	$38.7_{(a)}$	77	63		37.1		79	34.4	38 ± 6
		65.8(b)								
55 Fe	$4.6{\pm}0.7$	$3.5_{(a)}$	8.0	6.0		8.6		8.4		
ге		4.0 _(b)								
		$23.1_{\rm (a)}$								
68 Ge	>71	$36.2(a^*)$	89	60	81.6	41.3		58.4	29.6	30 ± 7
Ge	/11	45.0(b)	09	00	01.0	41.0		00.4	29.0	00±1
		$97.6(b^*)$								
	Astropart. Phys	<u>s. 91 (2017) 51</u>	<i>y</i>							

(a) semi-empirical cross sections(b) MENDL-2P database cross sections.

(I) GEANT4 calculations(II) ACTIVIA calculations

(a*) and (b*) ACTIVIA calculations including a potential 10-h flight of Ge powder.

Silvia Scorza

Conclusions

Cosmogenic activation of materials can compromise the sensitivity of ultra-low background experiments via the production of long-lived isotopes at Earth's surface due to nucleons.

Tritium contribution dangerous due to continuum beta decay shape and lifetime of 17.79year

First direct measurements of tritium and ⁴⁹V. ⁵⁵Fe and ⁶⁵Zn in germanium also presented. A lower limit of ⁶⁸Ge is discussed, too.

Tritium production rate in Ge of 82±21 nuclei/kg/d.

Minimize exposure to cosmic rays, better control of cosmogenic activation.

Production rates of ³H, ⁴⁹V, ⁵⁵Fe, ⁶⁵Zn and ⁶⁸Ge estimates with ACTIVIA code.

The main sources of uncertainty in the calculations come from difficulties on

- precise evaluation of inclusive production cross-sections
- accurate description of cosmic ray spectra
- -> More measurements might help constraining the model

Thank you!

Data taking acquisition ~1 year

⁶⁸Ge and ⁶⁵Zn half-lives < 3y decay rate not constant -> rate corrected by exp(tau)

Tritium half life of 17.79 y decay rate constant

In addition for ⁶⁸Ge, 90 days have been excluded in the analysis to avoid ⁷¹Ge contamination due to AmBe neutron calibration Cosmogenic Activation of Germanium Detectors in EDELWEISS III

