Cosmogenic Activation of Germanium Detectors in EDELWEISS III

Silvia Scorza

SNOLAB

XV International Conference on Topics in Astroparticle and Underground Physics
July 2017
Background

Rare search event experiment: **small expected rate** and **radioactive background** of most of the material gives **higher rate**

Very low background environment is needed

Background sources:
- **Cosmic rays** -> deep underground sites and muon veto
- **Natural radioactivity** (238U, 232Th, 40K) γ, e$^-$, β, n, α -> passive/active shielding
- **Intrinsic sources** (222Rn, long and medium-lived cosmogenic products of target material)
- Ultimately: **neutrino-nucleus scattering** (solar, atmospheric and supernovae neutrinos)
Background

Rare search event experiment: small expected rate and radioactive background of most of the material gives higher rate

Very low background environment is needed

Background sources:
- Cosmic rays -> deep underground sites and muon veto
- Natural radioactivity \(^{238}\text{U}, \, ^{232}\text{Th}, \, ^{40}\text{K}\) \(\gamma, \, e^-, \, \beta, \, n, \, \alpha\) -> passive/active shielding
- **Intrinsic sources** \(^{222}\text{Rn}\), long and medium-lived cosmogenic products of target material
- Ultimately: neutrino-nucleus scattering (solar, atmospheric and supernovae neutrinos)

It can not be removed once detector is contaminated
Activation at Sea-Level

Decay rate of a radioactive isotope depends on the time of material exposure to the source of radiation (t_{exp}) and on the time the isotopes were allowed to decay without being exposed to cosmic rays (t_{dec}).

\[
\frac{dN}{dt} = P \times \left(1 - e^{-\frac{t_{\text{exp}}}{\tau}}\right) \cdot e^{-\frac{t_{\text{dec}}}{\tau}}
\]

Production rate P of induced isotopes:

\[
P_i = \sum_j N_j \int \phi(E) \sigma_{ij}(E) dE
\]

- E = energy
- σ = production cross section
- ϕ = cosmic neutron flux
- N_j = number of target nuclear isotope j
Activation at Sea-Level

Decay rate of a radioactive isotope depends on the time of material exposure to the source of radiation (t_{exp}) and on the time the isotopes were allowed to decay without being exposed to cosmic rays (t_{dec}).

\[
\frac{dN}{dt} = P \times \left(1 - e^{-\frac{t_{\text{exp}}}{\tau}}\right) \cdot \left(e^{-\frac{t_{\text{dec}}}{\tau}}\right)
\]

Production rate P of induced isotopes:

\[
P_i = \sum_j N_j \int \phi(E) \sigma_{ij}(E) dE
\]

Different input cosmic-ray neutron spectra, can lead to a variation in production rates of about 20-30%
Activation at Sea-Level

Decay rate of a radioactive isotope depends on the time of material exposure to the source of radiation \(t_{\text{exp}} \) and on the time the isotopes were allowed to decay without being exposed to cosmic rays \(t_{\text{dec}} \).

\[
\frac{dN}{dt} = P \times (1 - e^{-t_{\text{exp}}/\tau}) \cdot (e^{-t_{\text{dec}}/\tau})
\]

Production rate \(P \) of induced isotopes:

\[
P_i = \sum_j N_j \int \phi(E) \sigma_{ij}(E) dE
\]

Excitation functions may account for up to a factor of 2 difference in the production rate of \(^{68}\text{Ge}\). The difference increases with the atomic number of the isotope produced.
R308 Analysis

FID Ge crystals: event ID from measurements of ionization and phonon energies

- 280 days July 14 - April 15: **160 days WS data**
- 24 FIDs for coincidence study
- **19/24** FIDs selected with > 2 days
 (13 detectors in production rate interpretation)
- Exposure of **1853 det·days**
- Hourly online **threshold <2 keV**
- Ionization resolution **<400eV**
- Chi-2 selection - pulse template reconstruction
 - Efficiency loss **<1%**
- Fiducial selection
 - Clean sample, no surface leakage
R308 Analysis

FID Ge crystals: event ID from measurements of ionization and phonon energies

Fiducial Event
Surface Event

surface gammas
surface betas

133Ba γ AmBe neutron
R308 Analysis

FID Ge crystals: event ID from measurements of ionization and phonon energies

Heat energy (keV)

Fiducial ionization energy (keV)

\(^{133}\text{Ba}\) \(\gamma\) AmBe neutron

Surface gammas

Surface betas

Heat-only events
- Best energy estimator
- 19 detectors
- 1853 det. days
- ER fiducial selection

Efficiency corrected spectrum
- Fiducial volume cut
- $E_{\text{fid}} > 3.5\sigma$ ionization
- Online trigger threshold
Rejecting multiple events reduces the Compton background by almost a factor of two while having no effect on tritium decays.

- Best energy estimator
- 19 detectors
- 1853 det.days
- ER fiducial selection
- + single selection
- Best energy estimator
- 19 detectors
- 1853 det. days
- ER fiducial selection
- Single selection
- + Tritium β-decay ($Q_\beta = 18.6$ keV)
 + EC decay of isotopes
 + Compton background

K shell Lines @ 10.37, 9.66, 8.98, 6.54, 5.99, 4.97 keV

EDELWEISS

Single hits

Compton (S): 0.089±0.002 cts/kg/day/keV

Tritium: 0.94±0.06±0.10 cts/kg/day/keV
Single/Coincidence @ 2 keV:
Understanding of global Compton behavior

The multiple-hit spectrum is compatible with the expectation that only the ^{65}Zn and, possibly, ^{54}Mn peaks, are contributing to a flat Compton background below 20 keV.
@ 0.8 keV:
Understanding of
- low-energy
structure down to 1 keV
- efficiency model

L/K ratio = 0.113 ± 0.008 (statistical error only)

The efficiency model is robust for energies above 2.0 keV
Cosmogenic Activation of Germanium Detectors in EDELWEISS III

Good correlation history vs decay rate

Strong tension @5.9σ (stat) with previous measurement
Avignone et al.
Agreement < 2σ with ACTIVIA calculation

Model estimates from P=34.4 to P=79 nuclei/kg/day
Cosmogenic Activation of Germanium Detectors in EDELWEISS III

Tritium

Relative error bars of the decay rate are more important

IGEX upper limit in tension with any estimates

Agreement $< 2\sigma$ with ACTIVIA calculations

Model estimates difference up to one order of magnitude

^3H Decay Rate (nuclei/kg/d)

Saturation Fraction

P: $82\pm12\pm18$ nuclei/kg/d
Summary

<table>
<thead>
<tr>
<th></th>
<th>This work</th>
<th>Cebrian (Ziegler)</th>
<th>Barabanov (Gordon)</th>
<th>Mei</th>
<th>Zhang (I)</th>
<th>Klapdor (II)</th>
<th>Avignone</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>82±21</td>
<td>46$^{(a)}$</td>
<td></td>
<td>27.7</td>
<td>48.3</td>
<td><21$^{(E)}$</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>49V</td>
<td>2.8±0.6</td>
<td>1.9$^{(a,b)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65Zn</td>
<td>106±13</td>
<td>38.7$^{(a)}$</td>
<td>77</td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>55Fe</td>
<td>4.6±0.7</td>
<td>3.5$^{(a)}$</td>
<td>6.0</td>
<td>8.6</td>
<td></td>
<td></td>
<td></td>
<td>8.4</td>
</tr>
<tr>
<td>68Ge</td>
<td>>71</td>
<td>23.1$^{(a)}$</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58.4</td>
</tr>
</tbody>
</table>

(a) semi-empirical cross sections
(b) MENDL-2P database cross sections.

(a*) and (b*) ACTIVIA calculations including a potential 10-h flight of Ge powder.

(I) GEANT4 calculations
(II) ACTIVIA calculations
Conclusions

Cosmogenic activation of materials can compromise the sensitivity of ultra-low background experiments via the production of long-lived isotopes at Earth’s surface due to nucleons. Tritium contribution dangerous due to continuum beta decay shape and lifetime of 17.79 year.

First direct measurements of tritium and 49V, 55Fe and 65Zn in germanium also presented. A lower limit of 68Ge is discussed, too.

Tritium production rate in Ge of 82 ± 21 nuclei/kg/d.

Minimize exposure to cosmic rays, better control of cosmogenic activation.

Production rates of 3H, 49V, 55Fe, 65Zn and 68Ge estimates with ACTIVIA code.

The main sources of uncertainty in the calculations come from difficulties on
- precise evaluation of inclusive production cross-sections
- accurate description of cosmic ray spectra
 -> More measurements might help constraining the model
Thank you!
Data taking acquisition ~1 year

^{68}Ge and ^{65}Zn half-lives < 3y decay rate not constant
-> rate corrected by $\exp(\text{tau})$

Tritium half life of 17.79 y decay rate constant

In addition for ^{68}Ge, 90 days have been excluded in the analysis to avoid ^{71}Ge contamination due to AmBe neutron calibration
Cosmogenic Activation of Germanium Detectors in EDELWEISS III

\[\tau(3^H) = 17.79 \text{ year} \]

\[\tau(65\text{Zn}) = 0.96 \text{ year} \]

\[
\frac{dN}{dT} = P \times (1 - e^{-\frac{t_{\text{exp}}}{\tau}}) \times (e^{-\frac{t_{\text{dec}}}{\tau}})
\]

Last value proportional to the rate measured in the detectors

FID844 (standard history)
FID827 (longer texp2)