The Dawn of Multimessenger Astronomy

Doug Cowen

PennState Eberly College of Science

Multimessenger Astrophysics

- Definition
- Motivations
- Candidate astrophysical sources
- The status quo
 - Messengers & Detectors
 - Discoveries
 - What's still hidden
- Discovery accelerants
 - New/Upgraded detectors
 - Virtual observatories: AMON and ASTERICS

What is Multimessenger Astrophysics?

Defⁿ: The observation of a single source producing distinct signals associated with two or more of the four fundamental forces:

Force	Messenger	Messenger Detected?	Source ID'd?	Multi- messenger?	
EM	γ	\checkmark	Loads	Sun, SN1987A	
Weak	ν	\checkmark	Twice		
Strong	p, nuclei	\checkmark	No	No	
Gravity	Grav. Waves	\checkmark	No	No	

What is Multimessenger Astrophysics?

Defⁿ: The observation of a single source producing distinct signals associated with two or more of the four fundamental forces:

Force	Messenger	Messenger Detected?	Source ID'd?	Multi- messenger?	
EM	γ	\checkmark	Loads	Sun, SN1987A	
Weak	ν	\checkmark	Twice		
Strong	p, nuclei	\checkmark	No	No	
Gravity	Grav. Waves	\checkmark	No	No	

In this talk we focus on high energies

What makes these?

What makes these?

Auger superimposed on Sudbury

D. Cowen

What makes these?

And these?

Auger superimposed on Sudbury

D. Cowen

What makes these?

And these?

Auger superimposed on Sudbury

IceCube event visiting Paris

What makes these?

And these?

Very difficult to answer when we get only one particle from any given source.

More Motivations

- Consider bonanza from low-energy multimessenger sources:
 - Sun: Used solar EM output to estimate v production.
 - Measurements fell short \rightarrow "solar v problem"
 - Solved right here in Sudbury, deepening understanding of v's (and confirming stars' fusion power source)
 - SN1987A: Coincident v detection gave
 - Unprecedented insight into SN explosion mechanism
 - Enabled new measurements of fundamental v properties
 - Generated hundreds of papers

More Motivations

- If we could detect *high*-energy multimessenger source(s):
 - We'd focus modern EM-based observatories on them, and similarly dramatic advances could ensue:
 - Acceleration mechanism revealed?
 - Source(s) of UHECRs unveiled?
 - Localization (and redshift) of GW emitters determined?
 - Additional fundamental particle properties discovered?

Candidate Astrophysical Sources

- Gamma Ray Bursts
 - Top candidate (but IceCube rules out some models)
- Active Galactic Nuclei; Blazars
 - Continuous sources (but not the most energetic)
- Supernovae
 - Have to play the waiting game for one in Milky Way
- NS-NS mergers, NS-BH mergers
 - BH-BH mergers may "only" produce GWs
- "Top-down": WIMPs, supermassive GUT relic particles, evaporating primordial BHs,...
 - Very important area of research, but not covered here

Figure from Chandra/Harvard webpage

High-Energy Astrophysical Messengers

Relative advantages and disadvantages:

High-Energy Astrophysical Messengers

Relative advantages and **disadvantages**:

Messenger	Sample size	Straight trajectory	Pointing resolution	Penetrat- ing
γ			≪ 1°	E _γ < 50 TeV (γ+γ _{IR} →e⁺e⁻)
ν	$\sigma_{\nu,matter} \ll 1$		~ 1°	
p, nuclei		B fields	~ 1°	E _p < 30 EeV (GZK cutoff)
Grav. waves			~1000 (°) ² (only 2 detectors)	

- GeV-TeV γ rays
 - satellites
 - IACTs
 - air shower arrays
- EeV-scale protons, nuclei
 - air shower arrays
- PeV-scale neutrinos
 - IceCube
- Grav. Waves
 - a-LIGO

- **GeV-TeV** γ rays
 satellites
 - Salemile
 - IACTs
 - air shower arrays
- EeV-scale protons, nuclei
 - air shower
 - arrays 📙
- PeV-scale neutrinos
 - IceCube
- Grav. Waves
 - aLIGO

D. Cowen

- GeV-TeV γ rays
 satellites
 - ACTs air shower arrays
- EeV-scale protons, nuclei
 - air shower arrays
- PeV-scale neutrinos
 - IceCube
- Grav. Waves
 - aLIGO

Exciting Times for Particle Astrophysics!

- Thunderous gravitational waves
 - Discovered and studied, but no counterparts seen
- Elusive cosmic neutrinos unveiled
 - Discovered but no sources identified yet
- Persistently inscrutable cosmic rays
 - Discovered decades ago, provenance still unknown

Exciting Times for Particle Astrophysics!

- Thunderous gravitational waves
 - Discovered and studied, but no counterparts seen
- Elusive cosmic neutrinos unveiled
 - Discovered but no sources identified yet
- Persistently inscrutable cosmic rays
 - Discovered decades ago, provenance still unknown

At high energies, why have we only been able to associate γ-rays with astrophysical sources?

Why Only γ-ray Sources So Far?

- In their first data runs, (v, p, GW) detectors aimed first for standalone source discoveries
 - Successfully detecting rare events (~1/month) but no astrophysical sources identified
- Next step: send out strong individual detections for (mostly EM) follow-up
 - O(100) follow-ups have been performed: nothing found yet
- Standalone and follow-up searches have been ongoing for nearly a decade
 - Clearly must keep looking, but perhaps new strategies are needed

New Strategy: Medium→Long-Term

- Augment sensitivity of existing detectors, or add new detectors
 - Approved:
 - GW: aLIGO upgrades, VIRGO, GEO600, KAGRA, LIGO-India
 - p, nuclei: Telescope Array
 - Proposed:
 - p, nuclei: AugerPrime
 - v: IceCube-Gen2/Phase 1
- Build larger, more sensitive detectors
 - Under construction:
 - γ-rays: CTA
 - ν: KM3NeT (partial)
 - Proposed:
 - v: IceCube-Gen2

New Strategy: Medium \rightarrow Long-Term

- Augment sensitivity of existing detectors, or add new detectors
 - Approved:
 - GW: aLIGO upgrades, VIRGO, GEC
 - p, nuclei: Telescope Array
 - Proposed:
 - p, nuclei:
- Jaiting
 - truction:
 - /-rays: CTA
 - ν: KM3NeT (partial)
 - Proposed:
 - v: IceCube-Gen2

New Strategy: Short-Term

- Overcome rareness by lowering thresholds; exploit otherwise "unusable" data
 - Examples:
 - IceCube single muon neutrinos at lower energies
 - Single-interferometer LIGO data
 - Can we get S/N large enough to be useful?
- Emphasize transient sources: lower EM background
 - In any smallish region of space, there's always a few known sources
 - Can we gather (v, p, GW) signals in real-time and trigger EM follow-up at sufficient low latency?

New Strategy: Short-Term

- Overcome rareness by lowering thresholds; exploit otherwise "unusable" data
 - Examples:
 - IceCube single muon neutrinos at lower energies
 - Single-interferometer LIGO data
 - Can we get S/N large enough to be useful?
- Emphasize transient sources: lower EM background
 - In any smallish region of space, there's always a few known sources
 - Can we gather (v, p, GW) signals in real-time and trigger EM follow-up at sufficient low latency?
- Yes and yes.

New Strategy: Short-Term

- Can do so by building a *multimessenger, real-time virtual observatory*
 - Pull together signals from disparate "triggering" detectors
 - E.g., IceCube(ν) + HAWC(γ)
 - Find coincidences in time and direction in real-time (& archivally)
 - Issue alerts for fast EM follow-up: catch fading transients & study them
- Benefits:
 - Powerful combination of
 - Wide field-of-view (FoV), 24/7 coverage of triggering observatories
 - High resolution of EM follow-up observatories
 - Can use "sub-threshold" data from triggering observatories
 - Otherwise low-significance data can rise in significance *if in coincidence with other data*
 - Note: This idea generalizes previous efforts, e.g. SNEWS for SNe $\boldsymbol{\nu}$
 - Supports higher than just pair-wise coincidence searches

Multimessenger Virtual Observatories

- Two efforts are now underway:
 - AMON (link)
 - Astrophysical Multimessenger
 Observatory Network (started ~6 years ago)
 - See Astroparticle Physics Vol. 45, 56-70 (2013)
 - ASTERICS (link)
 - Astronomy ESFRI* and Research Infrastructure Cluster (started ~2 years ago)
- Similar ideas and goals
 - Focus here on AMON

*European Strategy Forum on Research Infrastructures

Astronomy ESFRI & Research Infras

AMON

- Allows multiple particle astrophysics experiments to work in concert & share data to increase sensitivity to multimessenger transients
 - Provides low-latency, real-time system to
 - gather data
 - search for coincident multimessenger signals
 - issue alerts for rapid follow-up
 - Enables use of sub-threshold data
 - in real-time and archivally
- Simplifies interfaces
 - Straightforward connection to GCN (γ-ray Coord. Network)
 - Standardized event transmission
 - Cleaner interconnect topology
 - Single MoU

Predicted sensitivity gain in subthreshold GW-v searches with AMON:

 $\mathsf{E}^{\mathsf{ISO}}_{\mathsf{GW}}\left[\mathsf{M}_{\odot}\mathsf{c}^{2}
ight]$

Astroparticle Physics Vol. 45, 56-70 (2013)

Important Questions for AMON et al.

- Is someone else going to analyze my collaboration's data?
 - Each observatory retains full rights over use of its data (see AMON MOU)
 - All coincidence analyses require explicit permission of each participating collaboration
- Is the trigger latency small enough?
 - IceCube \rightarrow Swift: $\mathcal{O}(mins)$
- Is the aggregate data rate manageable?
 - Individual datum: direction, time, quality parameters
 - Adjustable rates, aim for few/hr/observatory
 - Cf.: ~ 1 /month for high significance events
 - Anticipate $\sim 1 \text{ TB/yr}$ of data
- Is the system on 24/7?
 - AMON uses two robust servers in separate physical locations, a clustered database,...
 - Achieved downtime of < 1 hr/yr
- Is there adequate sky coverage?
 - 94% of 4π sr-yr in FoV of 3 or more obs.
 - 2+ obs. view any given part of sky at same time

Important Questions for AMON et al.

- **X** Is someone else going to analyze my collaboration's data?
 - Each observatory retains full rights over use of its data (see AMON MOU)
 - All coincidence analyses require explicit permission of each participating collaboration
- ✓ Is the trigger latency small enough?
 - IceCube \rightarrow Swift: $\mathcal{O}(mins)$
- Is the aggregate data rate manageable?
 - Individual datum: direction, time, quality parameters
 - Adjustable rates, aim for few/hr/observatory
 - Cf.: ~ 1 /month for high significance events
 - Anticipate ~1 TB/yr of data
- Is the system on 24/7?
 - AMON uses two robust servers in separate physical locations, a clustered database,...
 - Achieved downtime of < 1 hr/yr
- Is there adequate sky coverage?
 - 94% of 4π sr-yr in FoV of 3 or more obs.
 - 2+ obs. view any given part of sky at same time

AMON

- Multiple *triggering* observatories have joined AMON:
 - ANTARES, Auger, FACT, Fermi, HAWC, IceCube, Swift BAT, LIGO/VIRGO
 - Are now, or will be, sharing sub-threshold data in real time
 - Many are wide–FoV, 24/7 instruments

- Multiple *follow-up* observatories have also joined:
 - FACT, MASTER, Swift XRT & UVOT, VERITAS
 - Have already started performing follow-up observations of AMON-brokered alerts

Results

- Initially enabling archival analyses ("walk before we run"):
 - Fermi LAT + IC40 (A. Keivani et al., PoS(ICRC2015)786 (2015))
 - Fermi LAT + IC40/59 (C. F. Turley et al., in preparation)
 - Primordial black hole search (G. Tešić, PoS(ICRC2015)328 (2015))
 - VERITAS Blazars + IC40 (C. F. Turley et al., ApJ 833, 117 (2016))
- Now starting to enable real-time analyses:
 - Swift XRT/UVOT + IceCube HESE (A. Keivani et al., in preparation)
 - Swift BAT + IceCube sub-threshold ν's (analysis starting)
 - HAWC sub-threshold + IceCube sub-threshold v's (starting)
 - Auger + IceCube sub-threshold ν's (starting)
 - IceCube Triplet v follow-up (IceCube Collab., submitted to A&A)
- For these efforts, AMON provides/provided (since April 2016)
 - a software framework for real-time coincidence analyses & alert emission
 - a database populated with private and public data from numerous observatories
 - a "pass-through" service for sending out alerts via GCN
 - E.g., IceCube's High-Energy Starting Event ("HESE") data

Example AMON-Enabled ν + γ Analysis

A. Keivani et al., PoS(ICRC2015)786 (2015) (w/pass 7) C. F. Turley et al., in preparation (w/pass 8)

Example AMON-Enabled Real-Time Analysis

- IceCube track-like HESE alerts
 - Sent to AMON (~12/yr) in real time
 - Broadcast via GCN to ~50 subscribers

- AMON-based code down-selects ~4/yr
 - Swift time is valuable!
- Swift performs follow-up, auto-tiling sky around reported ν_{μ} direction
 - Total observing request ~90ks

Example track-like HESE: $\sim 1^{\circ}$ pointing resolution.

Swift tiling pattern

D. Cowen

Example AMON-Enabled Real-Time Analysis

- Swift images are then automatically analyzed for new or fading UV or xray sources
 - Swift then performs followup of ~2 possible sources
- IceCube-160731A:
 - Swift slewed within ~ 1 hr
 - Covered $\sim 2.1 \text{ deg}^2$
 - Saw 6 x-ray sources:
 - all known
 - Saw no transients

Summary of AMON-Brokered Public IceCube Real-time HESE/EHE in 2016

Alert name/type	161103/HESE	160814A/HESE	160806A/EHE	160731A/HESE	160731A/EHE	160427A/HESE
RA/DEC (rev1) RA/DEC (rev2)	[40.87°, 2.62°] [40.83°, 2.56°]	[199.31°, -32.02°] [200.25°, -32.35°]	[l22.80°, -0.73°] [l22.81°, -0.81°]	[215.11°, -0.46°] [214.54°, -0.33°]	[215.09°, -0.42°] [214.54°, -0.33°]	[239.66°, +6.85°] [240.57°, +9.34°]
Resolution	0.42° (50%),1.23°(90%) 0.65° (50%),1.10°(90%)	0.48° (50%), I.49(90%)	0.11° (50%)	0.42° (50%),1.23°(90%) 0.35° (50%),0.75°(90%)	0.17° (50%),0.8°(90%) 0.35°(50%),0.75°(90%)	l.6° (50%), 8.9° (90%) 0.6° (90%)
ST or Signalness	0.30	0.12	0.28	0.91	0.85	0.92
Latency: Event t0 to GCN alert sending	40 s	42 s	37 s	41 s	54 s	81 s
Followups						
 AGILE Fermi LAT IPN MASTER Swift ANTARES HAWC Konus-Wind Maxi/GSC VERITAS FACT H.E.S.S LCOGT Pan-STARRS CALET Fermi GBM INTEGRAL MAGIC 						

Conclusions

- Fantastic new particle astrophysics detectors have put high-energy multimessenger astronomy at our fingertips
 - All we need are some source detections!
- No luck so far under current paradigms (standalone, or bilateral & unidirectional)
- AMON (and ASTERICS) expand multimessenger discovery space
 - Establish bidirectional, multilateral connections in real-time (and archivally)
 - Unleash sub-threshold data
 - HAWC+IceCube (γ + ν) real-time sub-threshold coincidence analysis ready
 - Simplify multimessenger effort via common xfer protocol, data format, event database and MoU
 - The world's particle astrophysics detectors are an aggregate investment of \sim \$10⁹, so even a small increase in sensitivity is a worth it
 - New partners welcome

Conclusions

- Fantastic new particle astrophysics detectors have put high-energy multimessenger astronomy at our fingertips
 - All we need are some source detections!
- No luck so far under current paradigms (standalone, or bilateral & unidirectional)
- AMON (and ASTERICS) expand multimessenger discovery space
 - Establish bidirectional, multilateral connections in real-time (and archivally)
 - Unleash sub-threshold data
 - HAWC+IceCube (γ + ν) real-time sub-threshold coincidence analysis ready
 - Simplify multimessenger effort via common xfer protocol, data format, event database and MoU
 - The world's particle astrophysics detectors are an aggregate investment of \sim \$10⁹, so even a small increase in sensitivity is a worth it
 - New partners welcome
- Every time we look at the heavens in a new way, discoveries usually ensue!