

Update on the MiniCLEAN Experiment

Steven Linden, for the MiniCLEAN Collaboration 24 July 2017 TAUP 2017, Sudbury, Ontario

CLEAN Concept

- Single phase noble liquid detector
- 4π PMT coverage
- Light guides and PMTs in cryogen
- Can exchange LAr/LNe to test for A² dependence of WIMP-nucleon cross-section
- Fiducialization provides self-shielding
- Scalable to much larger size for future generations of dark matter detectors

Pulse Shape Discrimination (PSD)

HCLEAN d_{ata}

Z5 Time (µs)

25

Xe

4.2

2.2

0.3

1.6

174

30

21 ns

Pulse Shape Discrimination (PSD)

Natural Ar contains a sizeable Ar39 component, which beta-decays with a lifetime of 269 years.

Expect ~500 hz. of Ar39 events in MiniCLEAN

Reject using timing (pulse shape discrimination).

Better than 3x10-8 rejection measured by DEAP-1

Based on DEAP-1 measurement with microCLEAN light yield, expect **10**-9 **rejection** (leakage of <1 event/year) using fprompt cut (with 50% WIMP acceptance and 20 keVee energy threshold)

More sophisticated Bayesian techniques (Lrecoil) improve expected discrimination to **10**⁻¹⁰.

Demonstration of this background rejection capability is perhaps the most important goal of MiniCLEAN

Event Selection	³⁹ Ar	γs
Raw rate	1 Bq/kg	$1.4 imes 10^{10} \ \gamma/\mathrm{yr}$
Energy between 12.5–25 keV _{ee}	$4.2 imes 10^8$	$6.0 imes 10^{6}$
Fiducial Volume Cut	$1.2 imes10^8$	$3 imes 10^5$
F _{prompt} Cut	75 ± 1.1	< 0.36
L _{recoil}	0.3 ± 0.2	
Total Background (events/year)	0.3 ± 0.2	< 0.36

24 July 2017

CLEAN Concept: Signal Verification

LAr scintillates in extreme UV (80-128 nm) Converted to visible by wavelength shifter (TPB). Acrylic provides shielding from PMT-backgroundss. Light guide brings visible light to PMTs. 92 PMTs housed in optical cassettes.

Water shield reduces neutron and rock gamma backgrounds Active volume holds 500 kg. of LAr; 150 kg. fiducial volume

Detector Construction: Inner Vessel

Assembled underground at SNOLAB in the Cryopit, down the hall from the Cube Hall
To reduce radon exposure, assembly was performed inside a small clean room with surface air pumped in.

Pressure test at manufacturerer

The Cryopit, with clean room for IV assembly

Detector Construction: Inner Vessel into Outer Vessel

Detector Construction: Inner Vessel into Outer Vessel

Critical lift of IV into OV.

SNOLAB installation group did a great job, and everything went smoothly.

After the lift, took vacuum data to verify PMTs were all still working

24 July 2017

Warm Gas Data

- In warm gas, triplet light is rapidly quenched as water vapor outgasses from acrylic.
- Monitored with an RGA can see water vapor peak rising over several hours.
- Allows us to measure the triplet time constant as a function of water vapor partial pressure.

Cold Gas Data: Triplet Lifetime

- Gas temperature 110 to 140 K.
- Fit pulse time distribution with exponential: $F(t) = p_0 \cdot [(1-p_1)e^{-t/\tau} + p_1]$
- Find a triplet time constant of 3500 ns longer than most previous measurements.
- Indicates very pure argon.
 24 July 2017

Cold Gas Data: Triplet Lifetime vs. Impurity

• In the course of cooling and commissioning, we performed an accidental experiment with nitrogen and oxygen impurities present in the IV argon.

• Fortunately, the lifetime was fully recoverable with sufficient purging.

• As we purged the impurities, we monitored the triplet lifetime, thus performing a measurement of lifetime vs. impurity.

Run Plan

• Currently filling with liquid argon, while continuing to take gas and partial fill data.

- Final commissioning (gain-matching of PMTs and calibration) ~1 month
- Natural argon data ~ 3 months
- Ar39 spike ~ 3 months
 - Run with x10 Ar39 content to demonstrate PSD at high event rate
 - Spike allows unequivocal demonstration of beta origin of backgrounds
 - Tests scale-up to a level required for 200T detector

Conclusion

- CLEAN detectors
 - Simple, scalable design
 - Low background
 - Ar39 spike, target exchange for signal verification
- MiniCLEAN is a technology demonstrator for 200T detector:
 - PSD (natural argon vs. spike)
 - Cold gas data shows excellent purity
 - Liquid data imminent