UNIVERSITY OF COPENHAGEN

Measurements of Tau Neutrino Appearance with IceCube-DeepCore

Michael Larson for the IceCube Collaboration Niels Bohr Institute 25 July 2017

15th International Conference on Topics in Astroparticle and Underground Physics TAUP2017

Atmospheric Neutrino Oscillations

- Neutrino oscillations are governed by the PMNS matrix
 - Nine separate terms
 - If unitary, can reduce to 3 mixing angles + 1 complex phase

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

- It is possible that the 3x3 matrix is an approximation to a larger NxN mixing matrix
 - 3x3 PMNS matrix approximation would show non-unitarity
- Two approaches are possible to look for non-unitarity:
 - Sterile neutrino searches for 1+N, N+1 mixing terms
 - Improved measurements of standard oscillation parameters
 - Requires information from a variety of energies, baselines

Constraints on 3x3 PMNS Matrix Terms

- Strong experimental constraints on v_e and v_μ terms even without unitarity

- Large uncertainties on v_{τ} related terms without unitarity constraints

Constraining v_{τ} Mixing Elements

- Oscillations occur from atmospheric neutrinos
 - Typically use a baseline of the Earth
 - We are dominated by $v_{\mu} \rightarrow v_{\tau}$ oscillations around 20 GeV
- Two potential measurements here:
 - v_{μ} Disappearance:

$$P_{\nu_{\mu}\to\nu_{\mu}} = \left|\sum_{j} U_{\mu j}^* U_{\mu j} e^{-im_j^2 L/2E}\right|$$

• v_{τ} Appearance:

$$P_{\nu_{\mu}\to\nu_{\tau}} = \left|\sum_{j} U^*_{\mu j} U_{\tau j} e^{-im_j^2 L/2E}\right|$$

- The two channels are sensitive to different elements
 - Measure both to improve limits on some of the v_τ elements

Measurements of v_{τ} Appearance in OPERA

- Measurement of CERN v_{μ} at Gran Sasso from 2008-2012
 - · Looking for CC interactions
- Emulsion cloud chambers
 - High precision position resolution
 - Allows direct observation of τ lepton
- Observed 5 v_τ candidate events
 - Expected signal: 2.64 ± 0.53 events
 - Expected background: 0.25 ± 0.05 events
- Rejection of no-appearance at 5.1σ

FIG. 2: Event display of the fifth ν_{τ} candidate event in the horizontal projection longitudinal to the neutrino direction. The primary and secondary vertices are indicated as V_0 and V_1 , respectively. The black stubs represent the track segments as measured in the films.

Measurements of v_{τ} Appearance in SuperK

FIG. 3. Fit results showing projections in the NN output and zenith angle distribution for taulike (NN>0.5), upward-going $[\cos(\theta) < -0.2]$, nontaulike (NN<0.5), and downward-going $[\cos(\theta) > 0.2]$ events for both the two-dimensional PDFs and data. The PDFs and data sets have been combined from SK-I through SK-III in this figure. The fitted tau signal is shown in gray.

- Atmospheric neutrino search using Super-Kamiokande
 - SKI-III (1996-2008)
 - Looking for CC interactions
- Can't identify individual v_τ events like OPERA
 - Relies on neural net to separate τ-like from other interactions
- Observed signal:
 - 180.1±44.3(stat)^{+17.8}/_{-15.2}(syst)
- Expected signal:
 - 120.2^{+34.2}_{-34.8}(syst)
- Rejection of no-appearance at 3.8σ
 - More recently, at 4.6σ with SKI-IV

Tau Neutrino Appearance in IceCube-DeepCore

- Constraints not yet precise enough for strong statements on PMNS unitarity
 - Largest uncertainties on τ -related mixing elements
 - v_{τ} appearance measurements can begin to give an additional handle for unitarity tests
- Current IceCube analyses constrain $v_{\mu} \rightarrow v_{\tau}$ from disappearance channel
 - Observation of v_{μ} disappearance implies $v_{\mu} \rightarrow v_{\tau}$ appearance
- Challenge:
 - Identify 20-30 GeV τ leptons
 - Expected decay length: O(mm)
 - DeepCore sensor granularity: 7 m
 - DeepCore cannot identify τ interactions individually
- Instead, focus on a inclusive appearance measurement like SuperK

Defining an "Appearance Strength" Parameter

- Use what OPERA, Super-Kamiokande have done previously
 - Define "tau normalization", N_{τ} , as modification of expected tau neutrino event rate from standard muon neutrino flux, oscillations

$$R'_{\nu_{\tau}} = N_{\nu_{\tau}} R_{\nu_{\tau}}(\theta_{23}, \theta_{13}, \Delta m_{31}^2, \dots)$$

- Fit both disappearance and appearance simultaneously
 - Disappearance primarily in track-like events
 - Appearance primarily in cascade-like events
- Can apply this to just CC v_{τ} or both (NC+CC) v_{τ} interactions
 - DeepCore does not have strong differentiation between NC events and v_τ interactions
 - Showing the latter today. CC-only in backup

Start by Using the Existing Event Selection

- v_µ disappearance gives a significant background uncertainty
- We can use the existing event selection from previous talk
 - Already constrains disappearance signal
 - Provides both track-like events and cascade-like events
- Using a similar set of systematics, we produce an expected sensitivity

Using the Disappearance Event Selection (Analysis 1)

Increasing Sensitivity to Appearance

- The existing event sample was designed for a very clean muon neutrino disappearance measurement
 - v_{τ} were not actively rejected
 - ... but also not actively selected for.
- · Can we build a better dataset for appearance? Yes!

Analysis 1

- Developed for v_{μ} disappearance measurement
- Uses data to model background muons
- Strong containment on starting, stopping vertex
- · Weaker reliance on BDTs
- Shown to give good data/MC agreement
- Expects 40k events/3 years

Analysis 2

- Developed for v_τ appearance measurement
- Uses simulation to model background muons
- Strong containment on starting vertex only
- Stronger reliance on BDTs
- Currently in development
- Expects 85k events/3 years

The Future of v_{τ} Appearance Measurements with Phase1

- How can we further improve sensitivity to ντ appearance?
 - Perform an upgrade to IceCube-DeepCore
- Initial studies are very promising
 - 7 additional strings
 - More precise calibrations
 - Significantly more GeV-scale events
- For more detail, see talk by Ken Clark later this session
- Using existing tools, perform a simple event selection to search for appearance

Conclusions

- IceCube-DeepCore can observe inclusive v_{τ} appearance
- Current disappearance event selection is being used
 - Well-understood, reasonable results
- · A new event selection is being developed
 - Significantly higher statistics
 - Improved sensitivity to oscillation effects
- The Phase1 upgrade to DeepCore can help
 - Can be used for better calibration, especially at low energies needed for appearance studies
 - Improved sensitivity to GeV-scale neutrinos
 - Even with relatively simple event selection, improving on sensitivity relative to DeepCore

Backup Slides

- Wide energy reach
 - High energy events used
 as control region
- High statistics:
 - Expect approximately 85k events/3 years
- Sample is divided using reconstructed muon length
 - "Track-like": L ≥ 50 m
 - "Cascade-like": L < 50 m
- Using common systematics with previous analyses

Included Systematics

Normalizations	
N _{atm.µ}	Normalization of Atm. Muons
Ne	Flux normalization of ve
N _{NC}	Normalization of neutral current interactions
f _{Coin}	Fraction of neutrino events with a coincident muon
Oscillations	
θ ₂₃	Atmospheric mixing angle
θ ₁₃	Reactor mixing angle
Δm_{23}^2	Mass difference between v_2 , v_3
Detector Uncertainties	
Sca. Lholeice	Scattering length in refrozen ice
LSca.+Abs. Loulkice	Scattering, absorption in glacial ice
ε ρμτs	Efficiency of the PMTs
Flux Uncertainties	
γv	Neutrino spectral index
γμ	Cosmic ray spectral index
σ_v^{Flux}	Zenith angle uncertainty in the neutrino flux
v-⊽ Ratio	Neutrino-antineutrino ratio
Cross-section Uncertainties	
MA ^{QE}	Quasi-elastic axial mass
MARES	Resonant axial mass
σ _{DIS}	Shape uncertainty associated with DIS interactions

Method for Statistical Appearance Measurement

