Status of the AMoRE experiment searching for neutrinoless double beta decay of ¹⁰⁰Mo

Hyon-Suk Jo

Center for Underground Physics Institute for Basic Science

Neutrinoless double beta decay of ¹⁰⁰Mo

The goal of the AMoRE (Advanced Mo-based Rare process Experiment) project is to search for neutrinoless double beta decay ($0\nu\beta\beta$) of ¹⁰⁰Mo using Mo-based scintillating crystals and low-temperature sensors.

AMoRE Collaboration

Advanced Mo based Rare process Experiment

8 countries, 18 Institutes, ~90 collaborators

Hyon-Suk Jo

Choice of ¹⁰⁰Mo

Candidates	Q _{ββ} (MeV)	N.A. (%)	
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187	
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8	
⁸² Se→ ⁸² Kr	2.995	9.2	
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8	
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6	
110 Pd \rightarrow 110 Cd	2.013	11.8	
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5	
124 Sn \rightarrow 124 Te	2.228	5.64	
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5	
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9	
$^{150}\text{Nd}{ ightarrow}^{150}\text{Sm}$	3.367	5.6	

Phys. Rev. C 53, 695 (1996)

- High Q-value (3.034 MeV)
- High natural abundance (9.6 %)
- Relatively short theoretically predicted half-life $(0\nu\beta\beta)$

Detector concept

⁴⁰Ca¹⁰⁰MoO₄ (enriched ¹⁰⁰Mo, depleted ⁴⁸Ca) or other Mo-based scintillating crystal used as source and detector + Metallic Magnetic Calorimeter (MMC, low temperature sensor) MMC Light 0.06 detector Ge Wafer 0.05 B/y events Light (a.u.) 20.0 20.0 Scintillating Reflector crystal $\dot{\alpha}$ events Heat film detector 0.01 Gold film Gold wires 2000 6000 8000 4000 Heat (keV) MMC "Source = detector" approach Simultaneous measurement of heat and light High detection efficiency > Particle discrimination for rejection of α -induced ➤ High energy resolution background **MMCs** Fast response, high energy resolution, wide operating temperatures

AMoRE sensitivity to $0\nu\beta\beta$

Sizeable background case

"Zero" background case

$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_A \frac{a}{A} \varepsilon M t$$

AMoRE project towards "zero"-background conditions:

- Reduction of the background
 - $> \alpha$ -background rejection with particle discrimination (heat and light measurement)
 - > less than 0.001% of depleted ⁴⁸Ca (natural abundance: 0.157%, $Q_{\beta\beta}$ =4.271 MeV)
 - Iow levels of internal and external backgrounds
- High energy resolution with MMCs
- High detection efficiency with "source = detector" approach
- Detector mass
 - enrichment of ¹⁰⁰Mo above 95%

Above-ground measurements (with a wet dilution refrigerator)

13.6

Pulse shape discrimination from heat signals

• Energy spectrum obtained with a ²³²Th source at 10 mK

• FWHM energy resolution: 8.7 keV @ 2.6 MeV (Region of interest: 3.034 MeV)

Yangyang underground laboratory (Y2L, South Korea)

Yangyang pumped storage Power Plant Minimum vertical depth : 700 m Access to the lab by car : around 2 km

Experiments

- COSINE : dark matter search experiment
- AMoRE-Pilot (followed by AMoRE-I)

Hyon-Suk Jo

TAUP 2017 - Laurentian University, Sudbury, Canada

AMoRE-Pilot detector configuration

Six ⁴⁰Ca¹⁰⁰MoO₄ crystals (from 0.2kg to 0.4kg each, for a total of ~1.8kg) Each crystal module has a heat detector and a light detector

Vibration from the pulse tube refrigerator

Hyon-Suk Jo

Comparison of light/heat ratio between Run-2 and Run-4

Large improvement of the light/heat ratio thanks to the reduction of vibration noise in the photon channels

Hyon-Suk Jo

TAUP 2017 - Laurentian University, Sudbury, Canada

July 25, 2017

Setup upgrade for Run-5

Hyon-Suk Jo

Current status of AMoRE-Pilot

- Four Pilot runs have been completed from summer 2015 to late 2016 with five ⁴⁰Ca¹⁰⁰MoO₄ crystals
- Operating temperatures 10 mK 30 mK
- Currently, Run-5 is running with 6 crystals (total mass ~1.8 kg) and two vibration damping systems

Two vibration dampers were installed

Spring Suspended Still (SSS) damper [Eddy currents]

> Mass Spring (MS) damper

12 detector channels (6 heat detectors + 6 light detectors)

Detector performance in Run-5 (preliminary)

 β/γ and α particles can be distinguished using pulse shape discrimination via pulse rise time or mean time

 β/γ and α particles can also be distinguished using the light/heat ratio

Energy resolution throughout the Pilot runs

The energy resolutions have been significantly improved throughout the different runs

FWHM energy resolution @ 2.615 MeV averaged over the detector modules

Run-5 : Baseline energy resolutions (FWHM @ 0 MeV) are now about 3~5 keV

Hyon-Suk Jo

AMoRE phases and schedule

• AMoRE-I at Y2L (same cryostat as Pilot), with CaMoO₄ crystals + a few others (ZMO, LMO, …)

• AMoRE-II at a new, larger laboratory (ARF), $X^{100}MoO_4$ crystals (X = Li, Na, ${}^{40}Ca$, Zn or other)

	Pilot	AMoRE-I	AMoRE-II
Mass	1.8 kg	~5 kg	~200 kg
Channels	12	36	1000
Background (counts/keV/kg/year)	0.01	0.001	0.0001
Sensitivity(T _{1/2}) (year)	~10 ²⁴	~10 ²⁵	~5×10 ²⁶
Sensitivity(m _{ee}) (meV)	380-720	120-230	17-32
Location	Y2L	Y2L	ARF (new lab)
Schedule	2016-2017	2018-2019	2020-2022

Hyon-Suk Jo

Site for Astroparticle Research Facility (ARF)

Handeok Iron Mine, Jeongseon

- ARF will be located at the Handeok mine
- Contract signed at the end of 2016
- Construction will start in late 2017

Preliminary design of Underground Laboratory

Plan for two experimental halls (total area ~2000 m²) under 1100 m below surface

Overview

- AMoRE searches for neutrinoless double beta decay ($0\nu\beta\beta$) of ¹⁰⁰Mo using Mo-based scintillating crystals and MMC sensors
- Throughout the different AMoRE-Pilot runs, several setup upgrades allowed us to reduce the vibration noise, which improved the energy resolution and particle discrimination powers (PSD, light/heat)
- Run-5 is currently running with 6 crystals (total mass ~1.8 kg), two vibration damping systems, and a muon veto system
- After some more tests, data taking will be carried out for several months this year

Thank you