Background model for the nEXO neutrinoless double beta decay experiment

John L. Orrell (PNNL), on behalf of the nEXO Collaboration

Introduction

The nEXO neutrinoless double beta decay experiment¹ uses the Geant4 radiation transport simulation toolkit to estimate relative probabilities to produce events due to decay of trace isotopes in detector materials.

This poster presents the simulation geometry and physics listed use to produce the background model, based on the methods used successfully for EXO-200.

Components and Source Terms

Full decay chains for U and Th as well as ⁶⁰Co and ⁴⁰K are simulated in the geometry volumes as listed here:

Component	Isotopes	Material
Outer Cryostat	238 U, 232 Th, 60 Co, 40 K	Carbon Composite
Inner Cryostat	238 U, 232 Th, 60 Co, 40 K	Carbon Composite
Inner Cryostat Liner	238 U, 232 Th, 60 Co	Titanium
HFE	238 U, 232 Th	HFE-7000
TPC Vessel	238 U, 232 Th	Copper
Cathode and bulge	238 U, 232 Th	Copper
Field Rings	238 U, 232 Th	Copper
FR Support Leg	238 U, 232 Th, 40 K	Sapphire
FR Support Spacer	238 U, 232 Th, 40 K	Sapphire
SiPM	238 U, 232 Th, 40 K	\mathbf{SiPM}
SiPM Support	238 U, 232 Th	Copper
SiPM Module Backing	238 U, 232 Th	$\mathbf{Q}\mathbf{u}\mathbf{a}\mathbf{r}\mathbf{t}\mathbf{z}$
SiPM Electronics	238 U, 232 Th	Silicon
SiPM Glue	238 U, 232 Th, 40 K	Silicone
SiPM Cables	238 U, 232 Th	Kapton
Charge Module Cables	238 U, 232 Th	Kapton
Charge Module Chip	238 U, 232 Th	Silicon
Charge Module Glue	238 U, 232 Th, 40 K	Silicone
Charge Module Support	238 U, 232 Th	Copper
Charge Module Backing	238 U, 232 Th	Quartz
LXe	¹³⁷ Xe, $2\nu\beta\beta$, ²²² Rn, $0\nu\beta\beta$	Xenon

Sensitivity goal: $T_{\frac{1}{2}} \approx 10^{28}$ years in 10 years of operation Physics lists

Key physics processes for nEXO background simulation include radioactive decay and interactions of emitted radiation. Processes and energy ranges are list here:

Particle	Process	Energy range
γ	Livermore EM	$< 1 {\rm GeV}$
e^-, e^+	Urban Multiple Scattering	$< 100 \mathrm{MeV}$
	Wentzel-VI Multiple Scattering	$> 100 \mathrm{MeV}$
	Coulomb Single Scattering	$> 100 \mathrm{MeV}$
e^-	Livermore Ionization	$< 100 \mathrm{keV}$
	Livermore Bremsstrahlung	$< 1 {\rm GeV}$
	21, 01, 01, 01, 01, 01, 01, 01, 01, 01, 0	

Simulation Geometry

Simulation Output

Geant4 simulation output is post-processed to include division into single-site and multi-site events. Results are stored in 2Dhistograms of standoff distance (distance from nearest material). Half-life sensitivity reach is calculated using entire parameter space, gaining from fitting to background shapes.

Simulation geometry includes both large components and fine levels of part details to assess background contributions from detector construction materials.

nEXO presentations at TAUP 2017:

- Talk: "nEXO: a tonne-scale next-generation double-beta decay experiment"
- Talk: "Progress in Barium tagging at the single atom/ion level for nEXO"
- Talk: "Results of nEXO detector development"
- Talk: "3D digital SiPM for large area low background experiments"

13:00 Mon, July 24 13:15 Mon, July 24 14:15 Mon, July 24 13:00 Tues, July 25

T S N

4

Poster: "The nEXO radioassay program" 5.

University of Alabama, Tuscaloosa AL, USA — M Hughes, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan **University of Bern**, Switzerland — J-L Vuilleumier Brookhaven National Laboratory, Upton NY, USA — M Chiu, G Giacomini, V Radeka

E Raguzin, T Rao, S Rescia, T Tsang

California Institute of Technology, Pasadena CA, USA — P Vogel

Carleton University, Ottawa ON, Canada — I Badhrees, M Bowcock, W Cree, R Gornea, K Graham, T Koffas, C Licciardi, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, D Harris, A Iverson, J Todd, T Walton Drexel University, Philadelphia PA, USA — MJ Dolinski, YH Lin, E Smith, Y-R Yen G Visser **Duke University**, Durham NC, USA — PS Barbeau

University of Erlangen-Nuremberg, Erlangen, Germany — G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, M Wagenpfeil, T Ziegler **IBS Center for Underground Physics**, Daejeon, South Korea — DS Leonard **IHEP Beijing**, People's Republic of China — G Cao, W Cen, Y Ding, X Jiang, Z Ning, X Sun, T Ťolba, W Wei, L Wen, W Wu, X Zhang, J Zhao **IME Beijing**, People's Republic of China — L Cao, X Jing, Q Wang **ITEP Moscow**, Russia — V Belov, A Burenkov, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich **University of Illinois**, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, LJ Kaufman,

University of California, Irvine, Irvine CA, USA — M Moe

Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, Université de Sherbrooke — F Bourque, S Charlebois, M Côté, D Danovitch, H Dautet, R Fontaine, F Nolet, S Parent, JF Pratte, T Rossignol, J Sylvestre, F Vachon J Farine, A Robinson, U Wichoski SLAC National Accelerator Laboratory, Menlo Park CA, USA — J Dalmasson, T Daniels, **Lawrence Livermore National Laboratory**, Livermore CA, USA — O Alford, J Brodsky, S Delaquis, A Dragone, G Haller, A Odian, M Oriunno, B Mong, PC Rowson, K Skarpaas M Heffner, A House, S Sangiorgio University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, CM Lewis, University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan A Pocar Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, G Li, A Schubert, M Weber **McGill University**, Montreal QC, Canada — T Brunner, K Murray **Oak Ridge National Laboratory**, Oak Ridge TN, USA — L Fabris, RJ Newby, K Ziock **Stony Brook University**, SUNY, Stony Brook NY, USA — K Kumar, O Njoya, M Tarka **Pacific Northwest National Laboratory**, Richland, WA, USA — I Arnquist, EW Hoppe, **Technical University of Munich**, Garching, Germany — P Fierlinger, M Marino JL Orrell, G Ortega, C Overman, R Saldanha, R Tsang **TRIUMF**, Vancouver BC, Canada — J Dilling, P Gumplinger, R Krücken, Y Lan, F Retière, Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, K Odgers V Strickland Yale University, New Haven CT, USA — D Moore