Neutrino-less double beta decay of ⁴⁸Ca studied by CaF₂(pure) scintillators --CANDLES--

Umehara, Saori <u>umehara@awa.tohoku.ac.jp</u> Research Center for Neutrino Science, Tohoku University

Outline

Double beta decay

Double beta decay of ⁴⁸Ca

CANDLES system

=CaF₂(pure) scintillators + Liquid scintillator

CANDLES III system at Kamioka underground lab.

Expected backgrounds

Shielding system for background reduction

Low background measurement

Summary

Double beta decay nuclei ^{248}Ca : low background \rightarrow large scale detector Shigher Q_{ββ} value (4.27MeV) ... \rightarrow low background because Q_{BB} value is higher than BG E_{max}=2.6MeV(²⁰⁸Tl, γ-ray) 3.3MeV(²¹⁴Bi,β-ray) Double beta decay of ⁴⁸Ca by using CaF₂ scintillators ELEGANT VI : CaF₂(Eu) scintillator \rightarrow realized low background condition CANDLES system: for large scale detector CANDLES III : current system

CANDLES III

CaF₂ scintillator (CaF₂(pure)) $305 \text{ kg} (96 \text{ modules} \times 3.2 \text{ kg})$ ⁴⁸Ca : 350g time constant $\tau \sim 1 \mu sec$ Liquid scintillator (LS) 4π active shield volume :2m³ time constant $\tau \sim a$ few ten nsec 🕗 Large photomultiplier tube 13 inch $PMT \times 36$ 20 inch PMT \times 14 10 inch PMT \times 12 🕗 Light pipe system guide scintillation light to PMTs

Pulse shape difference between CaF₂ and liquid scintillators (4µsec) (a few 10nsec) →background rejection

CANDLES III

CANDLES at Kamioka underground laboratory CANDLES III

Main detector CaF₂ scintillators (305kg)

Liquid scintillator tank (2m³)

CaF₂ scintillator (CaF₂(pure)) $305 \text{ kg} (96 \text{ modules} \times 3.2 \text{ kg})$ ⁴⁸Ca : 350g time constant $\tau \sim 1 \mu sec$ Liquid scintillator (LS) 4π active shield volume :2m³ time constant τ ~ a few ten nsec 🕗 Large photomultiplier tube 13 inch $PMT \times 36$ 20 inch PMT \times 14 10 inch PMT \times 12 😤 Light pipe system guide scintillation light to PMTs

PMTs and Light pipes Pulse shape difference between CaF₂ and liquid scintillators (4µsec) (a few 10nsec) →background rejection

Backgrounds in CANDLES

To reject these BG events; High energy γ -ray : construction of the shielding system Pile-up event : identification of the "pile-up" shape ²⁰⁸Tl event : identification of prompt²¹²Bi(by particle identification a-y ray)

Shielding system

Toward "background free measurement"

Schematic view of the shielding system

- CANDLES tank(stainless steel)
- Pb(γ-ray shield)
 - B sheet (neutron shield)
- Shielding system : BG ~1/100 Pb bricks
 - \cdot 7 ~ 12 cm in thickness
 - reduce y-ray BG from (n, y) reaction in rock.
 - BG γ-rays from rock will decrease by factor of ~1/120
 - B sheet
 - $\cdot B_4C$ loaded silicone rubber sheet
 - $\sim 5 \text{mm}$ in thickness
 - reduce thermal neutron
 - \rightarrow reduce BG from (n,y) in main tank.
 - N-capture events will decrease by factor of ~1/30

Construction of the shielding system ⁼ Shieldings inside/outside the tank BG rate : ~ 1/100

Backgrounds in CANDLES

γ-ray from neutron capture

high energy γ -ray from neutron capture on Fe, Ni, Si within stainless steel (main tank), rock in the mine.

Radioactive contaminations in CaF₂ crystals

To reject these BG events; High energy y-ray : construction of the shielding system Pile-up event : identification of the "pile-up"shape ²⁰⁸Tl event : identification of prompt ²¹²Bi(by particle identification a-y ray)

Umehara, Saori, 25th Jul. 2017, TAUP2017

Summary

CANDLES

Measurement of ⁴⁸Ca double beta decay

We installed the shielding system in 2016.

BG from neutron capture is reduced by 1/70~1/100

Obtained half-life limit: >6.2×10²²年

We updated half-life limit of ⁴⁸Ca.

Now we continue the measurement.

Future

We will apply ;

- Scintillating bolometer by using CaF₂(pure)
- Enrichment of ⁴⁸Ca :⁴⁸CaF₂(pure) scintillator

Now on stage of "cost effective" mass production

 \rightarrow design of shielding system

MCCCE

-multi-channel counter-current electrophoresis-

Multi-channel counter-current electrophoresis

Enrichment by using Crown Ether Experimental setup 1m glass column Crown-ether rings adsorb Calcium ions for long migration: For calcium, ⁴⁰Ca adsorption in many column are crown-ether is slightly prior connected. Crown-Ether ⁴⁰Ca ion 2. Ca solution fixed flow ra $\sim 0.1 \text{mol/l} CaCl_2$ by pump Result 1. Crown-ether resin Natural Ca packed in column Obtained isotopic ratio $8mm\phi \times 100cm$ of "Ca) Maximum 0.0026 Isotopic ratio ⁴⁰Ca : capture 0.0025 0.0024 120000 Ratio 0.0023 0.0022 Isotopic effect by crown ether 0.0021 Water pump Isotopic ratio 0.0020 Enriched ⁴⁸Ca of feed solution 0.0019 14100 14150 14200 14250 Solution Volume(ml) Water Umeharc 3. Sampling II. 201 Next R&D : cost effective system thermo. bath e.g. crown-ether monomer

Scintillating bolometer

future : CANDLES sensitivity

CANDLES series

Umehara, Saori, 25th Jul. 2017, TAUP2017 21