Discovery probability of next-generation $0\nu\beta\beta$ decay experiments

M. Agostini, G. Benato, J. A. Detwiler, arXiv:1705.02996

G. Benato University of California, Berkeley

TAUP 2107, Sudbury, ON, Canada July 24, 2017

$0 u\beta\beta$ Decay Searches: Motivation and Status

Open questions to which $0\nu\beta\beta$ decay could answer

• What mechanism for ν masses?

• Is L conserved?

• $\nu = \bar{\nu}?$

· Are we here thanks to leptogenesis?

$\mathrm{O}(10^2~\mathrm{M}\$)$ are going to be invested for an answer

- What return can be expected on this investment?
- · What are we capable of, and what should we aim for as a community?

Goals of this work

- What is the discovery probability (DP) of future experiments?
- · What sensitivity is of interest?
- · On which parameters should optimize and compare experimental designs?

Proposal for a Common Approach

- · Energy is the only observable that is necessary and sufficient for discovery
- Fold additional information (topology, pulse shape, \ldots) into efficiency
- Poisson counting in Region Of Interest (ROI) with (effective) fiducial volume and background level

Formalism

- Sensitive exposure: $\mathcal{E} = m_{iso} \cdot \varepsilon_{\text{ROI}} \cdot \varepsilon_{FV} \cdot \varepsilon_{sig} \cdot t$
- Sensitive background: $\mathcal{B} = \frac{n_{bkg}}{\mathcal{E}}$
- Number of signal events: $n_{0\nu\beta\beta} = \frac{\ln 2}{T_{1/2}^{0\nu}} \cdot \frac{N_A \cdot \mathcal{E}}{m_a}$
- Number of background events: $n_{bkg} = \mathcal{B} \cdot \mathcal{E}$

- $\cdot m_{iso} = isotope mass$
- t = live time
- $N_A = Avogadro number$
- $m_a = \text{isotope's molar}$ mass

$\Rightarrow \mathcal{B} \text{ and } \mathcal{E} \text{ provide full characterization of } 0\nu\beta\beta \text{ decay experiments} \\ \text{ and are naturally suited for comparisons}$

Exclusion or Discovery Sensitivity?

From the "Report to NSAC, NLDBD 2015":

"In particular, we advocated using the smallest of the available nuclear matrix elements for each isotope and quoting a lifetime for a 3σ discovery in the complete inverted hierarchy region."

•	Experiments	listed by	/ "Report to	NSAC, I	NLDBD	2015"
---	-------------	-----------	--------------	---------	-------	-------

Experiment	lso.	lso. Mass	σ	ROI	ϵ_{FV}	ϵ_{sig}	ε	В	$\begin{vmatrix} 3\sigma \text{ disc.} \\ \hat{T}_{1/2} \end{vmatrix}$	sens. $\hat{m}_{\beta\beta}$	Re Impr	equir over	ed nent
		[kg _{iso}]	[keV]	$[\sigma]$	[%]	[%]	$\left[\frac{\mathrm{kg}_{iso}\mathrm{yr}}{\mathrm{yr}}\right]$	$\left[\frac{\text{cts}}{\text{kg}_{iso} \text{ ROI yr}}\right]$	[yr]	[meV]	Bkg	σ	lso. Mass
LEGEND 200	⁷⁶ Ge	175	1.3	[-2, 2]	93	77	119	$1.7 \cdot 10^{-3}$	$8.4 \cdot 10^{26}$	40-73	3	1	5.7
LEGEND 1k	⁷⁶ Ge	873	1.3	[-2, 2]	93	77	593	$2.8 \cdot 10^{-4}$	$4.5 \cdot 10^{27}$	17 - 31	18	1	29
SuperNEMO	82 Se	100	51	[-4, 2]	100	16	16.5	$4.9 \cdot 10^{-2}$	$6.1 \cdot 10^{25}$	82-138	49	2	14
CUPID	82 Se	336	2.1	[-2, 2]	100	69	221	$5.2 \cdot 10^{-4}$	$1.8 \cdot 10^{27}$	15 - 25	n/a	6	n/a
CUORE	¹³⁰ Te	206	2.1	[-1.4, 1.4]	100	81	141	$3.1 \cdot 10^{-1}$	$5.4 \cdot 10^{25}$	66 - 164	6	1	19
CUPID	¹³⁰ Te	543	2.1	[-2, 2]	100	81	422	$3.0 \cdot 10^{-4}$	$2.1 \cdot 10^{27}$	11 - 26	3000	1	50
SNO+ Phase I	¹³⁰ Te	1357	82	[-0.5, 1.5]	20	97	164	$8.2 \cdot 10^{-2}$	$1.1 \cdot 10^{26}$	46 - 115	n/a	n/a	n/a
SNO+ Phase II	¹³⁰ Te	7960	57	[-0.5, 1.5]	28	97	1326	$3.6 \cdot 10^{-2}$	$4.8 \cdot 10^{26}$	22 - 54	n/a	n/a	n/a
KamLAND-Zen 800	¹³⁶ Xe	750	114	[0, 1.4]	64	97	194	$3.9 \cdot 10^{-2}$	$1.6 \cdot 10^{26}$	47 - 108	1.5	1	2.1
KamLAND2-Zen	¹³⁶ Xe	1000	60	[0, 1.4]	80	97	325	$2.1 \cdot 10^{-3}$	$8.0 \cdot 10^{26}$	21 - 49	15	2	2.9
nEXO	¹³⁶ Xe	4507	25	[-1.2, 1.2]	60	85	1741	$4.4 \cdot 10^{-4}$	$4.1 \cdot 10^{27}$	9-22	400	1.2	30
NEXT 100	¹³⁶ Xe	91	7.8	[-1.3, 2.4]	88	37	26.5	$4.4 \cdot 10^{-2}$	$5.3 \cdot 10^{25}$	82-189	n/a	1	20
NEXT 1.5k	¹³⁶ Xe	1367	5.2	[-1.3, 2.4]	88	37	398	$2.9 \cdot 10^{-3}$	$7.9 \cdot 10^{26}$	21 - 49	n/a	1	300
PandaX-III 200	¹³⁶ Xe	180	31	[-2, 2]	100	35	60.2	$4.2 \cdot 10^{-2}$	$8.3 \cdot 10^{25}$	65 - 150	n/a	n/a	n/a
PandaX-III 1k	¹³⁶ Xe	901	10	[-2, 2]	100	35	301	$1.4 \cdot 10^{-3}$	$9.0 \cdot 10^{26}$	20-46	n/a	n/a	n/a

- 15 meV band corresponds to the end of IO region
- · Red dots: published limits
- Black dots: 3σ discovery sensitivities with 5 yr live time
- Discovery sensitivity after 10 yr is $\sim \sqrt{2}$ higher for all experiments
- Bands represent NME spread

Discovery Probability with Light Neutrino Exchange

Bayesian method offers natural way to approach the problem:

$$\begin{aligned} \mathsf{DP} &= \frac{\text{Region of parameter space for which } a \geq 3 \, \sigma \text{ discovery is possible}}{\text{Total parameter space volume}} \\ &= \int_0^\infty \frac{dP(m_{\beta\beta})}{dm_{\beta\beta}} \cdot \overline{\mathsf{CDF}}_{Poisson}(C_{3\sigma}|S(m_{\beta\beta}) + B) \, dm_{\beta\beta}, \end{aligned}$$

How to compute the total parameter space volume?

- we cannot even invoke 'naturalness' to argue that $m_{\beta\beta}$ should not be much smaller than its individual m_i -contributions. [...] some flavour symmetry could easily force a small $m_{\beta\beta}$, giving rise to apparently unnatural cancellations [...]*
- On the other hand, several mass models do NOT predict specific values of m_{etaeta}
- * F. Feruglio, A. Strumia and F. Vissani, Nucl. Phys. B637 (2002) 345-377

Bayesian Global Fit of Neutrino Data

Characteristics and limitations of our approach

- Use all information available to date to extract PDF of $m_{\beta\beta}$ \Rightarrow Need to interpret plot of $m_{\beta\beta}$ vs m_l as a 2-dim PDF
- · Assumptions on neutrino masses folded in parameter basis and priors
- Need well-behaved (=normalizable) variables

Parameter basis:

 $\left\{\Sigma, \Delta m_{21}^2, \left|\Delta m_{3l}^2\right|, \theta_{12}, \theta_{13}, \alpha_{21}, (\alpha_{31} - \delta_{CP})\right\}$

- Natural to characterize by some scale which is then split \Rightarrow *quasi-degenerate* ν masses
- Σ would characterize the mass scale \Rightarrow Does not capture hierarchical neutrinos
- Hierarchical neutrinos case can be studied setting $m_l = 0^*$

Priors

- Masses: neutrino mass scale unknown
 - ⇒ log-flat priors
 - ⇒ Non-normalizable: need upper and lower cut-off.
 OK if data provide them.
- Angles: flat in $[0,2\pi[$
- Phases: flat in $[0, 2\pi[$
 - ⇒ Not non-informative
 - ⇒ Invoke naturalness!

* A. Caldwell et al., arXiv:1705.01945

Available Data

0 uetaeta decay data

A. Gando et al., PRL 117 (2016) 082503

β decay end-point

(Cosmology)

Discovery probability of next-generation $0\nu\beta\beta$ decay experiments

Caveats

- In NO, a flavor symmetry could induce an apparent fine tuning of the Majorana phases and a vanishing $m_{\beta\beta}$
- Mass mechanisms that drive m_l to zero are not considered
 - \Rightarrow Just extrapolate down the horizontal bands

- Bands show NME variation
- Top: $P(m_{\beta\beta}|\mathbf{D})$
- Bottom: $\int_{m_{\beta\beta}}^{+\infty} P(m_{\beta\beta} | \mathcal{D}) dm_{\beta\beta}$
- + Planck limit reduces cumulative probability by $\sim 20\%$ for NO and $\sim 10\%$ for IO
- With $m_l = 0$, $m_{\beta\beta}$ pushed to horizontal bands

 \Rightarrow Small impact on DP for IO, huge for NO

Results

- Fold $m_{\beta\beta}$ PDF with discovery sensitivity
- Bands represent NME maximal deviations
- Multi-isotope approach suggested!

DP for most promising experiments

- Reference analysis (quasi-degenerate neutrinos): $\sim 100\%$ for IO, > 50% for NO
- Hierarchical neutrinos ($m_l = 0$): > 90% for IO, < 2% for NO

Join the game: quantify your prejudice and extract your own DP!

- Example: 50:50 for IO:NO, 50:50 for H:QD $\Rightarrow~$ DP=60%

Cosmological limit

- + For NO, discovery probability degrades by $\sim 30\%$
- For IO, difference at percent level

Quenching of g_A

- Quenching degrades discovery sensitivity as well as current limits
 Fffect on discovery potential smaller than on sensitivity
- + $\,30\%$ quenching reduces discovery potential by 15% for IO
- + 30% quenching reduces discovery potential by 25% for NO

Cosmological limit AND quenching of g_A

- Region at high $m_{\beta\beta}$ stays disfavored \Rightarrow Reduced experimental reach
- Discovery power $\geq 50\%$ for IO
- Discovery power O(10%) for NO

What if KATRIN sees a signal?

+ DP= 100% regardless of ordering, mass model, NME, quenching, cosmology

Summary and Outlook

On which parameters should optimize and compare experimental designs?

Sensitive background and exposure appear to be the appropriate parameters

What sensitivity is of interest?

• 3σ discovery \Rightarrow Computable without toy-MC

What is the DP of future experiments?

- DP for IO is as high as has been advertised by the experimental collaborations
- Surprisingly high DP for NO relative to the recent community perception, module the mass model bias \Rightarrow Highlights the importance of what we believe about how neutrinos get their mass
- Surprisingly robust against many of the "damning" impacts of IO/NO discrimination, g_A quenching, or cosmological limits
- We believe these argument make a strong case for the value for investing in a global multi-isotope campaign to search for $0\nu\beta\beta$ decay at the IO scale

M. Agostini, G. Benato, J. A. Detwiler, arXiv:1705.02996 in press at Phys. Rev. D

Bonus: All Posteriors

Bonus: $0\nu\beta\beta$ Decay with Light Neutrino Exchange

Assumptions

0) Flavor and mass neutrino eigenstates: $\nu_l = \sum_i U_{li}\nu_i$.

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\frac{\delta_{CP}}{2}} \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix} = \frac{\mathsf{PMNS} \text{ mixing matrix}}{\mathsf{with Majorana phases}}$$

- 1) Only 3 known neutrinos are involved
- **2)** Neutrinos have a Majorana mass term in the SM Lagrangian. We don't consider an additional Dirac term or additional fields.

Physical observable: the effective Majorana mass

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} U_{ei}^{2} m_{i} \right| = \left| m_{1} c_{12}^{2} c_{13}^{2} + m_{2} s_{12}^{2} c_{13}^{2} e^{i\alpha_{21}} + m_{3} s_{13}^{2} e^{1(\alpha_{31} - \delta_{CP})} \right|$$

$0 u\beta\beta$ decay half life

 $\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu} \cdot |M_{0\nu}|^2 \cdot \frac{m_{\beta\beta}^2}{m_e^2}$

- $G_{0\nu}$ = phase space (known)
- $M_{0\nu}$ = nuclear matrix element (NME) \Rightarrow factor ~ 2 uncertainty from models

Oscillation measurements

- + $\left|\Delta m^2_{31}\right|$, δm^2_{21} , θ_{12} and θ_{13} known well and with negligible correlation
- Global Bayesian fit of oscillation exp.: I. Esteban et al., JHEP 01 (2017) 087
- Treat NO and IO separately
 ⇒ Can always re-weight DP when more information becomes available

β decay end-point measurements

- Sensitive to
$$m_{eta} = \sqrt{\sum_{i=1}^3 |U_{ei}|^2 \, m_i^2}$$

- Troitsk (Bayesian): $m_{\beta} < 2.12 \text{ eV} (95\% \text{ C.l.})^*$
- Mainz (frequentist): $m_{\beta} < 2.3 \text{ eV} (95\% \text{ C.L.})^{\dagger}$
- Include Troitsk even if impact is minimal
- * V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 † Ch. Kraus et al., Eur. Phys. J. C 40 (2005) 447-468

Recent $0 u\beta\beta$ decay searches

- Power constrained limits on 90% C.L. exclusion sensitivity
- $\begin{array}{l} \bullet \hspace{0.1 cm} \mbox{GERDA exclusion sensitivity}^{*:} \\ \hat{T}_{1/2}^{0\nu}(^{76}\mbox{Ge}) = 4.0\cdot 10^{25} \mbox{ yr} \\ \Rightarrow \hat{m}_{\beta\beta} = 200 430 \mbox{ meV} \end{array}$
- KamLAND-Zen exclusion sensitivity[†]: $\hat{T}_{1/2}^{0\nu}(^{136}\text{Xe}) = 5.6 \cdot 10^{25} \text{ yr}$ $\Rightarrow \hat{m}_{\beta\beta} = 84 - 230 \text{ meV}$
- * GERDA Collaboration, Nature 544 (2017) 47-52
- [†] A. Gando et al., Phys. Rev. Lett. 117 (2016) 082503

Cosmological observations

- Sensitive to: $\Sigma = m_1 + m_2 + m_3$
- Several limits in 10−100 meV range
 ⇒ Results depend on considered models and data sets
- We evaluate the DP with/without the cosmological limit

Likelihood

$$\begin{split} \mathcal{L} = & \mathcal{L} \left(\mathcal{D}_{osc} | \Delta m_{21}^2 \right) \\ & \cdot \mathcal{L} \left(\mathcal{D}_{osc} | \Delta m_{31}^2 / \Delta m_{23} \right) \\ & \cdot \mathcal{L} \left(\mathcal{D}_{osc} | s_{12}^2 \right) \\ & \cdot \mathcal{L} \left(\mathcal{D}_{osc} | s_{13}^2 \right) \\ & \cdot \mathcal{L} \left(\mathcal{D}_{Troitsk} | m_\beta \right) \\ & \cdot \mathcal{L} \left(\mathcal{D}_{0\nu\beta\beta} | m_{\beta\beta} \right) \end{split}$$

- $\mathcal{D}_{osc} = \text{posteriors from nu-fit}$
- $\mathcal{D}_{Troitsk} =$ Bayesian limit from Troitsk experiment
- $\mathcal{D}_{0\nu\beta\beta}$ = Power-constrained combination* of GERDA and KZ sensitivities due to presence of background under-fluctuations
- * G. Cowan et al., arXiv:1105.2166

Priors

- Masses: neutrino mass scale unknown ⇒ log-flat priors
 - · Insensitive to changes in units
 - Non-normalizable: need upper and lower cut-off. OK if experimental data provide them.
- Angles: flat in $[0, 2\pi[$
 - Angles are well known, prior has no effect
- Phases: flat in $[0, 2\pi[$
 - \cdot OK for angles
 - Not non-informative
 - Some flavor symmetry model can predict specific values of the Majorana phases!

Efficiencies

+ $\varepsilon_{\rm ROI} =$ fraction of $0\nu\beta\beta$ decay events falling in the ROI

$$\varepsilon_{\rm ROI} = \int_{\rm ROI} \frac{1}{\sqrt{2\pi}\sigma} \exp{\left(-\frac{\left(E-Q_{\beta\beta}\right)^2}{2\sigma^2}\right)} dE$$

- + ε_{FV} = active volume / fiducial folume fraction
- $\varepsilon_{sig} = \varepsilon_{MC} \cdot \varepsilon_{cut}$
- + ε_{MC} = containment efficiency (fraction of detected $0\nu\beta\beta$ events) from MC
- ε_{cut} = selection efficiency (analysis cuts, escluding FV)

ROI

- · Chosen based on (a) bkg or (b) available publications/slides
- If (a), we obtain an optimal ROI of $\pm 2 \sigma$ for quasi-background-free experiments, and $\pm 1.4 \sigma$ for background-dominated experiments
- Special situation for SuperNEMO (see later)

Discovery sensitivity

- Value of $T_{1/2}^{0\nu}$ or $m_{\beta\beta}$ for which an experiment has a 50% change to measure a signal above background with $\geq 3\sigma$ significance
- Computed for $\mathsf{T}^{0
 u}_{1/2}$, then converted to a range of m_{etaeta} for different NMEs
- Computed as:

$$\hat{T}_{1/2}^{0
u} = \ln 2 \frac{N_A \mathcal{E}}{m_a S_{3\sigma}(B)} \qquad \text{with } B = \mathcal{B}\mathcal{E}$$

- $S_{3\sigma}(B) =$ Poisson signal expectation at which 50% of identical experiments report a 3σ upwards fluctuation above B
- If $B \text{ large} \Rightarrow S_{3\sigma}(B) \propto \sqrt{B}$
- If $B \ll 1 \Rightarrow S_{3\sigma}(B) = \text{constant}$
- Find number of counts $C_{3\sigma}$ such that $CDF(C_{3\sigma}|B) = 3\sigma$, with CDF the cumulative of a Poisson distribution of mean B \Rightarrow Solve $1 - CDF(C_{3\sigma}|S_{3\sigma} + B) = 50\%$ to find $S_{3\sigma}$

Avoiding discrete jumps

- $C_{3\sigma}$ is integer $\Rightarrow S_{3\sigma}$ has discrete jumps
- Define *CDF*_{Poisson} with normalized upper incomplete gamma function to make it continuous:

$$CDF_{Poisson}(C|\mu) = \frac{\Gamma(C+1|\mu)}{\Gamma(C+1)}$$

- $S_{3\sigma}(B) = \text{constant for small B}$
- + $S_{3\sigma}(B)$ smooth and monotonical for increasing B
- Greatly improves computation speed (no toy-MC needed)
- Combination of data sets with different \mathcal{E} and \mathcal{B} results in smooth curve well represented by $S_{3\sigma}(B)$

- Example: ⁷⁶Ge
- For other isotopes, just rescale by molar mass

ROI optimization

 For high resolution and flat background around *Q_{ββ}*, maximize figure-of-merit:

$$F.O.M. = \frac{\operatorname{erf}(n/2)}{S_{3\sigma}(bn)}$$

- n = ROI half-width in units of σ
- $b = background counts per unit \sigma$ in 5 years of live time
- Large background: $S_{3\sigma}(bn) \propto \sqrt{(bn)}$ \Rightarrow Optimal ROI: 2.8 σ
- Background-free case: numerical solution \Rightarrow Optimal ROI: 4σ

Bonus: NME and Quenching of g_A

Nuclear Matrix Elements

- Consider different nuclear models (QRPA, ISM, IBM-2, EDF)*
- Use average among independent results obtained with the same method
- Run fit for each set of NME separately, then quote max and min

Quenching of g_A

- Axial-vector coupling enters NME as g_A^2
- For some nuclear models, g_A seems to be quenched by up to 30% as a function of Z \Rightarrow Effect on $m_{\beta\beta}$ potentially huge!
- Repeat fit with 30% quenching and quote difference

Image from J. Engel and J. Menendéz, Rept. Prog. Phys. 80 (2017) 046301

