

More results from the OPERA experiment

Nicoletta Mauri

(University of Bologna and INFN) on behalf of the OPERA Collaboration

15th International Conference on Topics in Astroparticle and Underground Physics, TAUP2017 Sudbury, Canada, July 25th, 2017

The Oscillation Project with Emulsion tRacking Apparatus

• Long baseline neutrino oscillation experiment located in the CNGS (CERN Neutrinos to Gran Sasso) ν_μ beam

• Direct search for $v_{\mu} \rightarrow v_{\tau}$ oscillations detecting the τ lepton produced in v_{τ} CC interactions (appearance mode)

Direct appearance search in OPERA: on event-by-event basis

Emulsion based active target: ECC

57 × 2 emulsion layers (42 μ m thick) poured on a 200 μ m plastic base

CNGS beam: optimized for v_{τ} appearance at LNGS (at 730 km)

 \rightarrow Maximize the number of v_{τ} CC interactions at LNGS

→ high energy beam <E_v> ~ 17 GeV

The v_{τ} detection technique

Modular detector of "Emulsion Cloud Chambers"

(or bricks)

Large mass

$$N_{\tau} \propto \left(\Delta \mathrm{m}^2\right)^2 M_{\mathrm{target}}$$

Extreme granularity

 $\sim \mu$ m space resolution

The OPERA hybrid detector

SM I

Target bricks walls + Target Tracker

Spectrometer RPC + drift tubes

Target bricks walls + Target Tracker

Spectrometer RPC + drift tubes

~ 150.000 bricks in total 1.25 kt mass

Vertex hunting in the brick

0) all tracks tagged in the CS films are followed upstream until a stopping point is found

Vertex hunting in the brick

- 0) all tracks tagged in the CS films are followed upstream until a stopping point is found
- 1) a ~ I cm³ volume centered in the stopping point is scanned and tracks are reconstructed
- 2) cosmic ray tracks (from a dedicated exposure) are used for the fine alignment of films
- 3) passing-through tracks are discarded and the vertexing algorithm reconstructs the vertex.

$v_{\mu} \rightarrow v_{\tau}$ appearance discovered

The 5 years long CNGS run

- 1.8 × 10²⁰ p.o.t. collected (80% of the design)
- 19505 v interactions in the emulsion targets.
- 5 candidate events fulfill kinematical selection [S/B ratio ~10]

Observed Data: 4 hadronic + I muonic candidates			
	Expected		
Channel	background	Expected signal	Observed
$\tau \to 1h$	0.04 ± 0.01	0.52 ± 0.10	3
$\tau \rightarrow 3h$	0.17 ± 0.03	0.73 ± 0.14	1
$\tau \rightarrow \mu$	0.004 ± 0.001	0.61 ± 0.12	1
$\tau \rightarrow e$	0.03 ± 0.01	0.78 ± 0.16	0
Total	0.25 ± 0.05	2.64 ± 0.53	5

Signal Background Modelization

- Multichannel (uncorrelated) counting model based on Poisson Statistics
- Gaussian for Background Uncertainties

$$\mathcal{L} = \prod \mathsf{Pois}(n_i, \mu s_i + b_i) \, \mathsf{Gaus}(b_{0i}, b_i, \sigma_{bi})$$

 $\mu \rightarrow$ strength of the signal (parameter of interest)

with $\mu = 0$: background-only hypothesis and $\mu = 1$: nominal signal+background

test statistics:

- i) Profile Likelihood Ratio;
- ii) Fisher's rule ($\mu = 0$).

Background-only hypothesis:

- p-value = 1.1×10^{-7}
- excluded at 5.1 σ significance

PRL 115, 121802 (2015)

The $5 v_{\tau}$ candidate events

Event selection with looser kinematical cuts

Loose kinematical cuts:

- Minimum selection to limit contribution from had. int. and large angle scattering bkg
- Negligible additional background from K/π decays
- →Increase the statistics and apply a multivariate analysis

Boost Decision Tree

Use kinematical, topological variables and their **correlations**

- ✓ 5 more v_{τ} candidates (increased statistics: ×2)
- ✓ S/B reduced from ~10 to ~3
- ✓ improvement in ∆m²₂₃ measurement, the first in appearance mode

Expected	Expected	Observed ν_{τ}	Δm_{23}^2 ρ_{re}	
Signal	Background	Observed ν_T	(10^{-3} eV^2)	
6.8	2.0	10	$\boxed{2.7 \pm 0.6}$	68% C.L

Variable	au o 1h	au o 3h	$ au o \mu$	au o e
$z_{dec} \; (\mu m)$	< 2600	< 2600	< 2600	< 2600
θ_{kink} (rad)	> 0.02	> 0.02	> 0.02	> 0.02
$p_{2ry} (GeV/c)$	>1	>1	>1	>1
$p_{2ry}^T \ (GeV/c)$	>0.15	/	>0.1	>0.1

Measurement of Δm^2_{23}

$$N_{
u_{ au}} \propto \int \phi(E) \sin^2\left(\frac{\Delta m_{32}^2 L}{4E}\right) \epsilon(E) \sigma(E) dE$$
 $\left(\frac{L}{\langle E \rangle}\right)_{opera} \sim 43 \text{ km/GeV}$ $\propto (\Delta m_{32}^2)^2 L^2 \int \phi(E) \epsilon(E) \frac{\sigma(E)}{E^2} dE$ $\left(\frac{L}{\langle E \rangle}\right)_{PEAK} \sim 500 \text{ km/GeV}$

$$\left(\frac{L}{\langle E \rangle}\right)_{opera} \sim 43 \text{ km/GeV}$$

$$\left(\frac{L}{\langle E \rangle}\right)_{PEAK} \sim 500 \text{ km/GeV}$$

"Steep" Δm_{23}^2 dependence

→ counting based measurement

90% C.L. interval by Feldman & Cousins method

 $\Delta m_{23}^2 = [2.1 - 3.3] 10^{-3} \text{ eV}^2$

(assuming full mixing)

Peculiar muon-less event

yz view

(vertical)

- Muon-less neutrino event
- Most probable topology: v interaction vertex + 2 decay vertices
- Rare topology not considered in the experiment proposal (0.1 events expected in full data sample)
- Ad hoc simulations + ANN (2 Layers MLP) to

 $v_{\tau}CC + charm$

• $\nu_{\tau}CC + c$

Assuming the event not being v_{τ} CC + charm: p-value ~ 10^{-4} \rightarrow Significance = 3.5 σ

Subdominant $v_{\mu} \rightarrow v_{e}$ oscillations

 OPERA ECC granularity allows e.m. shower id → v_e search

 A dedicated procedure, balancing time need vs efficiency

 $0.9\% v_e$ beam contamination

Contribution	# events for 19.97 x 10 ¹⁹ pot
$\nu_{\rm e}$ beam	31.7
τ (unidentified) \rightarrow e	0.7
$\pi^0 \rightarrow \gamma$ (misidentified)	0.5
$\nu_{\mu} \rightarrow \nu_{e}$ oscillations	2.8
Total	35.7 (32.9 w/o osc.)
observed	34

Sterile neutrino mixing searches

OPERA can test the sterile neutrino hypothesis

3+1 model:

parameters of interest

 ν_{e} appearance

 v_{τ} appearance

 v_{τ} appearance

Annual modulation of muon rate

 ΔT in the upper atmosphere

- → variation in atmospheric density
- \rightarrow variation in π/K interaction length
- → variation in the fraction of mesons decaying before interacting

→ Annual modulation of muon rate

(more muons in summer than in winter)

를 500

Comparison with Dark Matter modulated signals and other experiments

Correlation between R_{μ} and the effective temperature T_{eff}

 \rightarrow measurement of α_T

Conclusions

- \triangleright Discovery of $v_{\mu} \rightarrow v_{\tau}$ appearance in the CNGS neutrino beam: 5.1 σ
- ► Loose selection analysis to increase the number of v_{τ} candidates \Rightarrow improve OPERA measurement of Δm^2_{23} (first measurement in appearance mode)
- \succ Muon-less double decay event Favored interpretation: v_{τ} CC interaction with charm production
- $\triangleright \nu_{\mu} \rightarrow \nu_{e}$ oscillation search
- > Constraints on sterile neutrinos from $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\tau}$ with the 3+1 flavor model
- > Non-oscillation Physics: annual modulation of atmospheric muons
- > PERSPECTIVES: Exploit OPERA unique feature of identifying all three flavors:
 - v_{τ} appearance
 - v_e appearance
 - v_u disappearance

to constrain oscillations parameters with one single experiment

Thank you for your attention! Image taken using an OPERA nuclear emulsion film with a pinhole hand made camera courtesy by Donato Di Ferdinando

Back Up

$\nu_{\mu} \rightarrow \nu_{\tau}$ background characterization

Monte Carlo simulation benchmarked on control samples.

CC with charm production (all channels) If primary lepton is not identified and the daughter $\nu_{\mu,e}$ charge is not (or incorrectly) $D^+ \qquad \mu^-, e^- \qquad \mu^+ \qquad e^+ \qquad h^+$

MC tuned on CHORUS data (cross section and fragmentation functions), validated with measured OPERA charm events.

Reduced by "track follow down", procedure and large angle scanning

[Eur.Phys.J. C74 (2014) 2986]

Hadronic interactions

Background for $\tau \to h$

FLUKA + pion test beam data

Reduced by large angle scanning and nuclear fragment search

[PTEP9 (2014) 093C01]

Large angle muon scattering Background for $\tau \rightarrow \mu$

Measurements in the literature (Lead form factor), simulations and dedicated test-beams

[IEEE Trans.Nucl.Sci. 62 (2015) no.5, 2216]

Data samples

The 5years long CNGS run ended in 2012.

1.8 · 10²⁰ p.o.t. collected (80% of the design)

1.25 kton initial target mass(150 k bricks)

19505 neutrino interactions in the emulsion targets.

Year	Day s	p.o.t. (10 ¹⁹)	ν interactions
2008	123	1.74	1698
2009	155	3.53	3693
2010	187	4.09	4248
2011	243	4.75	5131
2012	257	3.86	3923
tot	965	17.97	19505

Location efficiency

Hybrid detector:

a complex simulation!

Reasonable agreement.

The prediction for the τ signal and backgrounds is based on efficiencies derived from the observed 0μ -like and 1μ -like samples

Validation with the charm events sample Charm and τ decays are topologically Test for: reconstruction efficiencies, description of Similar kinematical variables, charm background. 54 ± 4 expected ↔ 50 observed charm MC charm MC K_s⁰ / Λ and hadr. int. MC K_s^0/Λ and hadr. int. MC data 1.3 mm D, Λ_{α} Eur.Phys.J. C74 (2014) 8, 2986 tracks 0.25 MC ν_{μ} CC int. data ŏ 5000 1000 2000 4000 100 120 Decay length (µm) Entries: 2648

Events 52

20

15

10

Atmospheric muon charge ratio

Eur. Phys. J. C74 (2014) 2933

$$\phi_{\mu^{\pm}} \propto \frac{a_{\pi} f_{\pi^{\pm}}}{1 + b_{\pi} \mathcal{E}_{\mu} \cos \theta / \epsilon_{\pi}} + R_{K\pi} \frac{a_{K} f_{K^{\pm}}}{1 + b_{K} \mathcal{E}_{\mu} \cos \theta / \epsilon_{K}}$$

Highest-E region reached!

opposite magnet polarities runs

→ lower systematics

Strong reduction of the charge ratio for multiple muon events

$$1\mu$$
 1.377 ± 0.006 multi- μ 1.098 ± 0.023

Results compatible with a simple $\pi - K$ model

Primary Cosmic Ray composition at ~ $10^{13} \div 10^{14}$ eV/nucleon: proton excess $\delta_0 = 0.61 \pm 0.02$

Multiplicity studies in neutrino-lead scattering

The average charged particles multiplicity at primary vertex was measured.

- ✓ Test for phenomenological and theoretical models
- ✓ Provides data to tune MC event generators.
- ✓ Test KNO Scaling

submitted to EPJC and arXiv (http://arxiv.org/abs/1706.07930)