New Measurement of Atmospheric Neutrino Oscillations with IceCube

July 25, 2017

Tyce DeYoung
Department of Physics and Astronomy
Michigan State University
for the IceCube Collaboration
IceCube Laboratory
Data is collected here and sent by satellite to the data warehouse at UW–Madison

50 m

IceTop

86 strings of DOMs, set 125 meters apart

1450 m

Digital Optical Module (DOM)
5,160 DOMs deployed in the ice

2450 m

DeepCore

Amundsen–Scott South Pole Station, Antarctica
A National Science Foundation-managed research facility

60 DOMs on each string

DOMs are 17 meters apart

Antarctic bedrock
IceCube DeepCore

- A more densely instrumented region at the bottom center of IceCube
 - Eight special strings plus 12 nearest standard strings
 - Hamamatsu high Q.E. PMTs
 - String spacing \(\sim 70\) m, DOM spacing 7 m: \(\sim 5\)x higher effective photocathode density than IceCube
- In the clearest ice, below 2100 m
 - \(\lambda_{\text{atten}} \approx 45-50\) m, very low levels of radioactive impurities
- IceCube provides an active veto against cosmic ray muon background
DeepCore Physics: 5-100 GeV

• Searches for dark matter-induced neutrino flux from…

• Direct searches for exotic particles, e.g. slow monopoles: *Eur. Phys. J.* C74, 2938 (2014)

• Neutrino astronomy: neutrino bursts from, e.g. choked GRBs: *Astrophys. J.* 816, 75 (2016)

• Atmospheric neutrino spectrum: first measurements of ν_e above 50 GeV:

• … and atmospheric neutrino oscillations

see talk by Morten Medici
Oscillations with Atmospheric Neutrinos

- Neutrinos available over a wide range of baselines, with energies from a few GeV to 100 TeV
- Oscillations produce distinctive pattern in 2D energy-angle space
 - Rather than near and far detectors, we have a range of beams and a single detector
 - Multi-MTon volume/high statistics allows deconvolution of oscillations (unique dependence on angle and energy) from systematics
Probing oscillation physics at a range of baselines and energies not accessible to long-baseline or reactor neutrino experiments
Oscillograms

- Measure atmospheric parameters (Δm^2_{atm}, θ_{23}) at high energies
 - Tau neutrino appearance also accessible – test of 3x3 mixing paradigm

- Below 10-15 GeV, matter resonances depending on mass ordering

see talk by Michael Larson

see talk by Martin Leuermann
Atmospheric Oscillations with DeepCore

- 41,599 events from 2012-14 data sets, χ^2/n.d.f. = 117 / 119
- Full analysis is $L \times E_\nu \times$ particle type, projected onto (L/E_ν) for illustration
- Shaded range shows uncertainty in prediction at best fit (mostly atm. μ)
Nuisance Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Priors</th>
<th>Best Fit NO</th>
<th>Best Fit IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrino event rate [% of nominal]</td>
<td>no prior</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>$\Delta \gamma$ (spectral index)</td>
<td>0.00 ± 0.10</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>$\nu_e + \bar{\nu}_e$ relative normalization [%]</td>
<td>100 ± 20</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>NC relative normalization [%]</td>
<td>100 ± 20</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>$\Delta (\nu/\bar{\nu}) \ [\sigma]$, energy dependent [42]</td>
<td>0.00 ± 1.00</td>
<td>-0.56</td>
<td>-0.59</td>
</tr>
<tr>
<td>$\Delta (\nu/\bar{\nu}) \ [\sigma]$, zenith dependent [42]</td>
<td>0.00 ± 1.00</td>
<td>-0.55</td>
<td>-0.57</td>
</tr>
<tr>
<td>M_A (resonance) [GeV]</td>
<td>1.12 ± 0.22</td>
<td>0.92</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Detector parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Priors</th>
<th>Best Fit NO</th>
<th>Best Fit IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall DOM efficiency [%]</td>
<td>100 ± 10</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>relative DOM efficiency, lateral [\sigma]</td>
<td>0.0 ± 1.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>relative DOM efficiency, head-on [a.u.]</td>
<td>no prior</td>
<td>-0.72</td>
<td>-0.66</td>
</tr>
</tbody>
</table>

Background

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Priors</th>
<th>Atm. μ contamination [% of sample]</th>
<th>Atm. μ contamination [% of sample]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no prior</td>
<td>5.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

- Held fixed due to lack of impact on fit: $\Delta m^2_{21} = 7.53 \times 10^{-5} \text{ eV}^2$, $\sin^2 \theta_{12} = 0.304$, $\sin^2 \theta_{13} = 2.17 \times 10^{-2}$, and $\delta_{CP} = 0^\circ$
Best fit: $\Delta m_{32}^2 = 2.31^{+0.11}_{-0.13} \times 10^{-3} \text{ eV}^2$, $\sin^2 \theta_{23} = 0.51^{+0.07}_{-0.09}$
Outlook

• In addition to multimessenger astrophysics, IceCube’s copious background of atmospheric neutrinos enables investigation of a range of neutrino physics

• Observations in a unique energy range
 • Different systematics than long-baseline experiments
 • Sensitivity to possible new physics in the neutrino sector

• New measurement of atmospheric oscillations has precision similar to NOvA, T2K, MINOS; prefers maximal mixing
 • Follow-on analyses using this data set, and a variant with even higher statistics, are underway
Digital Optical Module

- Onboard capture of PMT waveforms
 - 300 MS/s for 400 ns with custom ATWD chip
 - 40 MS/s for 6.4 µsec with commercial ADC
- Absolute timing < 2 ns (RMS)
- Dynamic range ~1000 p.e./10 ns
- Noise rate ~600 Hz (underlying Poisson rate 260 Hz)
- DOM electronics dead time < 1%
- Survival rate: 98.5%