Sensitivity of the DUNE Experiment to CP Violation

Lisa Whitehead Koerner University of Houston for the DUNE Collaboration

TAUP 2017 July 26, 2017

HOUSTON

Neutrino Oscillations

- measurements of the CPviolating phase Some open questions: Is CP violated in neutrino
 - Is θ_{23} maximal? (= $\pi/4$?)
 - What is the neutrino mass ordering?

Electron Neutrino Appearance

(For antineutrinos, a \rightarrow -a and $\delta \rightarrow -\delta$)

 v_e appearance probability depends on θ_{13} , θ_{23} , δ_{CP} , and matter effects -

measurements of all four possible in a single experiment

Large value of $\sin^2(2\theta_{13})$ allows significant v_{e} appearance sample

UNIVERSITY of HOUSTON

2016 Global Oscillation Parameter Fit

Best fit $\delta_{CP} = 261^{\circ + 51^{\circ}}_{-59^{\circ}}$ ($\approx -\pi/2$)

Some values of δ_{CP} excluded at 3σ for IH

HOUSTON

http://www.nu-fit.org

4 July 26, 2017 LWK | Sensitivity of the DUNE Experiment to CP Violation

Deep Underground Neutrino Experiment (DUNE)

- Muon neutrino beam from Fermilab (LBNF – Long-Baseline Neutrino Facility)
 - On-axis, conventional hornfocused beam
 - Beam intensity of 1.2 MW, upgradeable to 2.4 MW (for 120 GeV primary protons)
- Near detector (ND) at Fermilab
- Far detector (FD) at SURF (Sanford Underground Research Facility) in South Dakota, 1300 km baseline
 - 40 kt liquid argon (LAr) TPC (4 x 10 kt modules)

UNIVERSITY of

HOUSTON

Status and Timeline

DUNE Collaboration began in 2015

 Today: 964 collaborators, 164 institutions, 30 countries

Collaboration meeting in May 2017

UNIVERSITY of

HOUSTON

DUNE Timeline

6 July 26, 2017 LWK | Sensitivity of the DUNE Experiment to CP Violation

DUNE Spectra

~1000 appearance events in ~7 years

GLoBES inputs described in arXiv:1606.09550

Neutrino beam flux simulated using GEANT4

GENIE event generator

Reconstructed spectra predicted using detector response parameterized at the single particle level

UNIVERSITY of

HOUSTON

CP Violation Sensitivity

CP (NH)

GLoBES-based fit of four event samples

Beam and detector staging assumptions are included:

- Start with 20 kt, increasing to 40 kt
- 80 GeV primary protons @ 1.07
 MW, increasing to 2.14 MW

UNIVERSITY of

HOUSTON

• Width of band indicates variation in sensitivity for θ_{23} values in the NuFit 2016 90% C.L. range

CP (IH)

- Assumes equal running in neutrino and antineutrino mode
- Includes simple normalization systematics and oscillation parameter variations

Sensitivity Over Time

 δ_{CP} Resolution

CP Violation Sensitivity

UNIVERSITY of HOUSTON

• Width of band indicates variation in sensitivity for θ_{23} values in the NuFit 2016 90% C.L. range

Systematic Uncertainty

CP Violation Sensitivity

- CPV measurement statistically limited for ~100 kt-MW-years
- Sensitivities in DUNE CDR are based on GLoBES calculations in which the effect of systematic uncertainty is approximated using uncorrelated signal normalization uncertainties.
 - $v_{\mu} = \bar{v}_{\mu} = 5\%$ (Flux uncertainty after ND constraint)
 - $v_e = \bar{v}_e = 2\%$ (Residual uncertainty after constraints from other samples)

Strategy for Controlling **Systematic Uncertainties**

- Flux uncertainties (see the next talk!):
 - ND measurements of fully leptonic neutrino interactions, low-v method, hadron production measurements (NA61/SHINE)
- Interaction model uncertainties:
 - ND constraints (argon target)
 - Improved models in neutrino interaction generators
 - Neutrino interaction data (ArgoNeuT, MINERvA, NOvA ND, T2K ND280, MicroBooNE, SBND, ICARUS, ...)
- Detector effects:
 - Prototypes and calibration measurements (LArIAT, Mini-CAPTAIN, DUNE 35t, ProtoDUNE, ...)

at CFRN

- DUNE
 - Collaboration formed ~2 years ago; far site construction has begun
 - Long-baseline neutrino oscillation program is expected to begin in 2026 when the LBNF neutrino beam becomes available
- Experiment is optimized to answer remaining questions about 3neutrino mixing, including sensitivity to CP violation for much of the parameter space
- DUNE experiment strategy to control systematic uncertainty includes:
 - High performance near and far detectors providing ability to constrain systematics using DUNE data
 - External measurements and calibration data
 - Improved modeling of neutrino interactions

Effect of θ_{23} & θ_{13}

DUNE Staging Assumptions

Staging Assumptions:

- Year 1 (2026): 20-kt FD with 1.07 MW (80-GeV) beam and initial ND constraints
- Year 2 (2027): 30-kt FD
- Year 4 (2029): 40-kt FD and improved ND constraints
- Year 7 (2032): upgrade to 2.14 MW (80-GeV) beam (technically limited schedule)

Exposure (kt-MW-years)	Exposure (Years)	
171	5	
300	7	
556	10	
984	15	

NuFIT 2016

NuFIT 3.0 (2016)

UNIVERSITY of

HOUSTON

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 0.83)$		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 heta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.271 \rightarrow 0.345$
$ heta_{12}/^{\circ}$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$31.38 \rightarrow 35.99$
$\sin^2 heta_{23}$	$0.441\substack{+0.027\\-0.021}$	$0.385 \rightarrow 0.635$	$0.587\substack{+0.020\\-0.024}$	$0.393 \rightarrow 0.640$	$0.385 \rightarrow 0.638$
$ heta_{23}/^{\circ}$	$41.6^{+1.5}_{-1.2}$	$38.4 \rightarrow 52.8$	$50.0^{+1.1}_{-1.4}$	$38.8 \rightarrow 53.1$	$38.4 \rightarrow 53.0$
$\sin^2 heta_{13}$	$0.02166\substack{+0.00075\\-0.00075}$	$0.01934 \to 0.02392$	$0.02179\substack{+0.00076\\-0.00076}$	$0.01953 \to 0.02408$	$0.01934 \rightarrow 0.02397$
$ heta_{13}/^{\circ}$	$8.46_{-0.15}^{+0.15}$	$7.99 \rightarrow 8.90$	$8.49_{-0.15}^{+0.15}$	$8.03 \rightarrow 8.93$	$7.99 \rightarrow 8.91$
$\delta_{ m CP}/^{\circ}$	261^{+51}_{-59}	$0 \rightarrow 360$	277^{+40}_{-46}	$145 \rightarrow 391$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.50_{-0.17}^{+0.19}$	7.03 ightarrow 8.09	$7.50_{-0.17}^{+0.19}$	7.03 ightarrow 8.09	$7.03 \rightarrow 8.09$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \ \mathrm{eV}^2}$	$+2.524^{+0.039}_{-0.040}$	$+2.407 \rightarrow +2.643$	$-2.514^{+0.038}_{-0.041}$	$-2.635 \rightarrow -2.399$	$ \begin{bmatrix} +2.407 \to +2.643 \\ -2.629 \to -2.405 \end{bmatrix} $

For 1σ uncertainty in DUNE sensitivity calculations, we take 1/6 of the ±3 σ range, to account for non-Gaussian PDFs in NuFit.

16 July 26, 2017 LWK | Sensitivity of the DUNE Experiment to CP Violation

Comparison to 2016 Global Fit

HOUSTON DUNE

Neutrino-Antineutrino Asymmetry

