

Cosmic Rays Investigation by the PAMELA experiment

Beatrice Panico INFN Naples on behalf of PAMELA collaboration

Istituto Nazionale di Fisica Nucleare

The PAMELA experiment

Payload for Antimatter/Matter Exploration and Light-nuclei Astrophysics

- Search for antimatter: help solving the cosmological problem about the existence of the apparent asymmetry between matter and antimatter;
- Search for signatures of exotic processes connected to the Dark Matter problem;

- Study solar physics and solar modulation, investigating the heliosphere
- Study terrestrial magnetosphere and Earth magnetosphere

The PAMELA collaboration

The PAMELA collaboration

Launch: 15th June 2006, 0800 UTC

The PAMELA experiment

Resurs-DKI - multi-spectral imaging of Earth's surface **PAMELA** is mounted inside a pressurized container of the Resurs DK-1 spacecraft

- Launched on 15th June 2006
 In nearly continuous data-taking mode since January 2016 when downlink operation were terminated
 - ✔ Quasi polar and elliptical orbit
 - ✔ Inclination ~ 70°
 - ✔ Altitude ~ 300 600 km
 - ✔ From 2010 circular orbit

The PAMELA experiment

PAMELA overall results

Results span 4 decades in energy and 13 in flux

Physics Reports

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physrep

The PAMELA Mission: Heralding a new era in precision cosmic ray physics

O, Adriani ^{ab}, G,C, Barbarino^{c,d}, G,A, Bazilevskaya^e, R, Bellotti ^{f,8}, M, Boezio^h, EA, Bogomolovⁱ, M, Bongi ^{ab}, V, Borwicini^h, S, Bottai^b, A, Bruno^{f,8}, F, Cafagna^g, D, Campana^d, R, Carbone^{d,n}, P, Carlsonj^k, M, Casolino¹, G, Castellin^{im}, M,P, De Pascale^{1,n,1}, C, De Santis^{1,n}, N, De Simone¹, V, Di Felice¹, V, Formato^{h,p}, A.M, Galper^P, U, Giaccari^d, A.V, Karelin^P, M,D, Kheymits^P, S,V, Koldashov^P, S, Koldobskiy^P, S,Yu, Krut'kov¹, A.N, Kvashnin^e, A, Leonov^P, V, Malakhov^P, L, Marcelliⁿ, M, Martucci^{n,4}, A.G, Mayorov^P, W, Menn^e, V,V, Mikhailov^P, E, Mocchiuttiⁿ, A, Monaco^{f,8}, N, Mori^{a,9}, R, Munini^{h,b,k,n}, Nikionov^{1,1,n}, G, Osteria^d, P, Papini^b, M, Pearcej^{i,k}, P, Picozza^{1,n,k}, C, Pizzolotto^{h,s,k}, M, Ricci^q, S,B, Ricciarin^{b,m}, L, Rossetto^{j,k}, R, Sarkar^h, M, Simon^e, R, Sparvoli^{1,n}, S,A, Voronov^P, J, Wu^{j,k,u}, Y,T, Yurkin^P, G, Zampa^h, N, Zampa^h, V,G, Zverev^P

²University of Florence, Department of Physics, 1-50019 Sex o Flarencin o, Florence, Italy * INFN, Sezime di Rimmor, I-50019 Sezio Flarensho, Florence, Isaly ⁶ University of Naples "Federico II", Department of Physics, I-80126 Naples, Italy *INFN, Sezime di Naples, I-801.26 Naples, Ivaly *Lebedev Physical Insekure, RII-119991 Moscow, Russia "University of Bari, Department of Rhysics, 1-701 26 Bari, Italy INRV, Sezione di Bari, 1-70126 Bari, kdy •INFN, Sezime di Triese, 1-34 149 Triese, kaly Volle Rhysical Technical Institute, RI-194021 St. Petersburg, Russia KTH Ray & Insoluter of Technology, Deparament of Physics, AlbaNova University Cantre, SE-10691 Southtim, Sweden ^bThe Oskar Kiein Canare for Cosma pareicle Physics, AlbaNova University Canare, SE-10691 Stockhaim, Sweden "INRN, Sezione di Rome "Tor Vergese", I-001 33 Rome, Isaly ¹⁰ FAC, 1-50019 Sesso Flaten eine, Florence, Joaly * University of Rome "For Vergous", Department of Physics, 1-00133 Rome, lealy * University of Triese, Department of Physics, I-34147 Triese, Italy PNacional Research Nuclear University MERNI (Moscow Physics Engineering Inscisue) RU-115409 Mescow, Russia NINFN, Labora: ori Nazion di di Frascael, 1-00044 Frascael, Ivaly "Universide Siegen, Deparamene of Physics, D-57068 Siegen, Germany * MFN, Sezione di Perugia, 1-061 23 Perugia, kely "A genzia Spaziale Ivaliana (ASI) Science Dava Cenver, 1-0004 4 Frascavi, Ivaly * School of Mashemarks and Physics, China University of Geosciences, CN-430074 Wahan, China

✓ Absolute Fluxes of primary Cosmic Rays

Protons and Helium Nuclei Spectra & H/He ratio

- First high-statistics and high-precision measurement over three decades in energy
- Deviations from single power law (SPL):
 - Spectra gradually soften in the range 30÷230 GV
 - Spectral hardening @ R~235GV Δγ~0.2÷0.3 SPL is rejected at 98% CL

Clear evidence of different H and He slopes above ~ 10 GV

Result confirmed by AMS-02!

O. Adriani et al., Science 332 (2011) 6025 ; M. Aguilar et al., PRL 115, (2015) 211101

PAMELA Results: Electrons

✓ Absolute Fluxes of primary Cosmic Rays

✓ Light Nuclei and Isotopes

PAMELA Results: Secondary cosmic rays

Light Nuclei and Isotopes

- Tuning of cosmic-ray propagation models with measurements of secondary/primary flux ratio
- ²H/¹H and ³He/⁴He are complimentary to B/C measurements in constraining propagation models (Coste et al., A&A 539 (2012) A88)
- Antiparticles (antiprotons, positrons), secondaries from homogeneously distributed interstellar matter (light nuclei)

Hydrogen and helium isotopes

Boron and carbon fluxes and B/C

BORON AND CARBON

- Flux measure from 2 to 260 GV;
- Different spectral shape;

B/C RATIO

- Standard tool for studying propagation models;
- B/C \propto diffusion coefficient, K = D₀ E^{$-\delta$};

Adriani et al., ApJ 791 (2014), 93

Lithium and Beryllium Isotopes

β (ToF) vs. Rigidity or Multiple dE/dx (Calorimeter) vs. rigidity Lithium Beryllium

Ratio ⁷Li / ⁶Li

$^{7}Be / (^{9}Be + ^{10}Be)$

✓ Absolute Fluxes of primary Cosmic Rays

✓ Light Nuclei and Isotopes

✓ <u>Antiparticles</u>

PAMELA Results: Positrons

nature International weekly journal of science

Vol 458 2 April 2009 doi:10.1038/nature07942

nature

LETTERS

An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV

 O. Adriani¹⁻², G. C. Barbarino^{3,4}, G. A. Bazilevskaya⁵, R. Bellotti⁶⁻⁷, M. Boezio⁸, E. A. Bogomolov⁹, L. Bonechi^{1,2}, M. Bongi², V. Bonvicini⁸, S. Bottai², A. Bruno⁶⁻⁷, F. Cafagna⁷, D. Campana⁴, P. Carlson¹⁰, M. Casolino¹¹, G. Castellini¹², M. P. De Pascale^{11,13}, G. De Rosa⁴, N. De Simone^{11,13}, V. Di Felice^{11,13}, A. M. Galper¹⁴, L. Grishantseva¹⁴, P. Hofverberg¹⁰, S. V. Koldashov¹⁴, S. Y. Krutkov⁹, A. N. Kvashnin⁵, A. Leonov¹⁷, V. Malvezzi¹¹, L. Marcelli¹¹, W. Menn¹⁵, V. V. Mikhailov¹⁴, E. Mocchiutti⁸, S. Orsi^{10,11}, G. Osteria⁴, P. Papini², M. Pearce¹⁶, P. Picozza^{11,13}, M. Ricci¹⁷, S. B. Ricciarini⁷, M. Simon¹⁵, R. Sparvoli^{11,13}, P. Spillantini^{11,2}, Y. I. Stozhkov⁵, A. Vacchi⁸, E. Vannuccini², G. Vasilyev⁷, S. A. Voronov¹⁴, Y. T. Yurkin⁴, G. Zampa⁸, N. Zampa⁸, & V. G. Zverev¹⁴

PAMELA Results: Antiprotons

✓ Absolute Fluxes of primary Cosmic Rays

✓ <u>Light Nuclei and Isotopes</u>

- ✓ <u>Antiparticles</u>
- ✓ Anisotropies

PAMELA Results: CRE Anisotropy

Positrons - R > 10 GV

Electrons R > 10 *GV*

Significance map for backtraced positrons Background: Protons Angular scale 10°

Histogram of calculated significance

Significance map for backtraced electrons Background: Monte Carlo simulations Angular scale 10°

Angular scale 10[°]

O. Adriani et al., ApJ 811 (2015) 21

Number of events as a function of the angular distance from the Sun direction

B. Panico - TAUP 2017, Sudbury July 24 - 28, 2017

significance

✓ Absolute Fluxes of primary Cosmic Rays

- ✓ <u>Light Nuclei and Isotopes</u>
- ✓ <u>Antiparticles</u>
- ✓ Anisotropies
- ✓ Solar events, solar modulation

The solar modulation

SOLAR CYCLE

- Solar activity rises and falls over an 11 year cycle
- Can be shorter/longer
- Different events during the cycle
- Activity correlates with Sunspot Number

B. Panico – TAUP 2017, Sudbury July 24 - 28, 2017

Updated 2017 Apr 3

Heliospheric conditions during PAMELA observations

http://cosmicrays.oulu.fi/

PAMELA observations covers ~ one solar cycle

The PAMELA experiment

Time dependence of the electron flux

The ratios between the measured e⁻ fluxes from January 2007 till December 2009 and the measured fluxes for the period July-November 2006 with the corresponding computed spectra.

O. Adriani et al., ApJ 810 (2015) 142; M. S. Potgieter et al., 810 (2015) 2, 141

B. Panico – TAUP 2017, Sudbury July 24 - 28, 2017

Evolution of the electron (e⁻) energy spectrum from July 2006 to December 2009

H/He selection

- Single good-quality track in the spectrometer
 - \rightarrow Particle rigidity (R = pc/Ze)
- Downward-going (velocity: β>0) & positive-curvature (R>0) trajectory
 - \rightarrow Positive-charge particle from above
- Clean pattern through the apparatus

10

 \rightarrow Not an interaction product above or in the tracking system

He

Η

10²

• Energy deposits in the tracking system consistent with H and He nuclei

→High-statistic (~10⁸) sample of H and He

(no isotope separation)

→ Negligible bk of -interaction products -misidentified particles

10³

R (GV)

PAMELA data

DATASET: From 2006 to 2014

B. Panico - TAUP 2017, Sudbury July 24 - 28, 2017

He Fluxes Acceptance 0.15 **Black Dots: Science** Evolution of the helium energy spectrum Temporal period : 1 year from July 2006 to September 2014 Extended up to 2014 STATES OF STREET Num01 060604 061231 10² May14 Num02_070101_071231 Num03_080101_081231 Num04_090101_091231 Num05_100101_101231 Oct12 Num06_110101_111231 10 Num07_120101_121231 Num08_130101_131231 **PRELIMINARY** Num09_140101_141231 Mar11 Aug09 Jan08 10^{-1} 10 R(GV)

Summary and conclusions

- PAMELA has been in orbit and studying cosmic rays for almost 9 years.
- Antiproton energy spectrum and ratio \rightarrow Measured up to ~300 GeV.
- High energy positron fraction (>10 GeV) \rightarrow Measured up to ~300 GeV.
- H and He absolute fluxes \rightarrow Measured up to ~1.2 TV.
- H and He isotope ratio
- Electron and positron absolute flux
- B/C ratio and absolute fluxes up to 100 GeV/n.
- CREs Anisotropies
- Solar physics: measurement of modulated fluxes and solar-flare particle spectra.
- Physics of the magnetosphere: first measurement of trapped antiproton flux and detailed measurement of trapped proton flux.
- Other studies and forthcoming results: *Primary and secondary-nuclei abundance (up to Oxygen), Solar modulation (long-term flux variation and charge-dependent effects), Solar events: several new events under study.*