THE WATCHMAN DEMONSTRATION:

REMOTE REACTOR MONITORING USING A GADOLINIUM-DOPED WATER CHERENKOV DETECTOR

> TEAL PERSHING (UC DAVIS) FOR THE WATCHMAN COLLABORATION TAUP 2017 NEW TECHNOLOGIES PARALLEL JULY 27TH, 2017

ANTINEUTRINOS FROM NUCLEAR REACTORS

Distance to detector, small

interaction cross section

With the right detector configuration, antineutrinos could be used to monitor/exclude the existence of reactors at tens to hundred of kilometers

3

ANTINEUTRINO DETECTORS: AN EXAMPLE

- Already a scintillator-based detector measuring reactor antineutrino fluxes remotely
 - Detection made primarily measuring inverse beta decay (IBD) events
- Large standoff/single reactor monitoring and discovery presents additional requirements
 - Easily scalable & affordable
 - Low environmental impact
- Gadolinium-doped water Cherenkov detectors meet the criteria for this end goal

[1] Bernstein, A. For the WATCHMAN Collaboration, "WATCHMAN: a Demonstration of Remote Reactor Monitoring with Gadolinium Doped Water Detectors", Presented Talk, The 2017 International Conference on Applications of Nuclear Techniques, Rare Event Detection Session, contribution ID 102

THE WATCHMAN COLLABORATION

32 collaborators
10 Universities
4 National Laboratories
Co-spokespersons:
Adam Bernstein, LLNL
Mark Vagins, UC Irvine/Tokyo
University

THE WATCHMAN DEMONSTRATION

- Primary goal: Actively monitor an operating reactor plant installation from 10-25 km standoff
 - Demonstrates the reactor monitoring capability of a ~kton volume Gd-water detector
 - Paves the path for operating 0.1-1 Mton volume Gd-doped detectors
 - Could actively monitor reactors at ~100 km standoffs

2 cores

1570 MWt per core

HARTLEPOOL REACTORS (UK)

Potential upgrades:

PERRY REACTOR (US)

1 core

3875 MWt

- ~Installation of 100 fast photosensor units (i.e. Large area picosecond photodetectors)
- WbLS fill following Gd-H₂0

WATCHMAN DETECTOR

DETECTING IBDS WITH GD-DOPED WATER

 ν_e

- IBD interaction: $\overline{v_e} + p \rightarrow e^+ + n$
- Delayed coincidence signal
 - Prompt light from positron's Cherenkov light
 - Delayed signal (~30 µs) gamma cascade after Gadolinium capture of neutron
 - Average energy release of Gd capture above most natural backgrounds

PE signal in LLNL well counter - 1 ton Gd-doped water

[2] S. Dazeley, A. Asghari, A. Bernstein, N.S. Bowden, V. Mozin, "A water-based neutron detector as a well multiplicity counter", **Nuclear Instruments and Methods in Physics Research A** 771 (2015) 32–38

7

WATCHMAN – DOMINANT BACKGROUNDS

- **1: long lived radionuclides**
- **2:** fast neutrons
- 3: coincidences of:
 - single gamma-rays,
 - neutrons,
 - muons,
 - radon...

R

ROCK

The long lived radionuclide event rates are measured by WATCHBOY

FAST NEUTRON MEASUREMENT - MARS

- Multiplicity and Recoil Spectrometer (MARS)
- Fast neutrons incident on lead target induce multiple neutron products
 - Fast neutron incident energy determined with neutron multiplicity
- First variable depth measurement made with one detector
 - Paper submitted to PRL May 2017

Fast neutron (~200 MeV)

Fast Neutron Flux vs. Energy, measured at the Kimballton

Underground Research Facility (KURF)

LONG-LIVED RADIONUCLIDES WITH WATCHBOY

2 ton Gd-

doped region

Background event pairs

- WATCHBOY Gd-doped water detector designed to measure the ⁹Li production rate following cosmic muons
 - ⁹*Li* signal: two flashes (prompt beta and delayed neutron) following a muon event
- Set a limit on ${}^{9}Li$ production rate at 400 m.w.e. depth at KURF
 - 90% CL: 1.9 $\times 10^{-7} \mu^{-1} g^{-1} cm^2$
 - Determined radionuclide production is a subdominant background
- Results published in NIM Phys. R. A in June 2016

- 36 10" outer volume PMTs in a water volume for muon ID
- 16 10" PMTs in Gd-doped water region

[6] S. Dazeley, M. Askins, M. Bergevin, A. Bernstein, N.S. Bowden, T.M. Shokair, P. Jaffke, S.D. Rountree, M. Sweany, "A search for cosmogenic production of β -neutron emitting radionuclides in water", Nuclear Instruments and Methods in Physics Research A 821 (2016) 151–159

MONITORING OF REACTOR STATES - STUDY

• Boulby Mine (UK) and Fairport (USA) two main potential sites for WATCHMAN Gd-doped water Cherenkov detector

	Option 1	Option 2
Reactor Location	Perry, Ohio, United States	Hartlepool, England, United Kingdom
Thermal Power (MWt)	1 x 3875	2 x 1500
Detector Location	Morton Salt/IMB mine	Boulby underground
	Painesville, Ohio	science lab, Boulby, England
Standoff	~13 km	~25 km
Overburden (mwe)	~1500	~3000
Signal Events	110 per month	11 per month
Background Events	50 per month	20 per month

- For Fairport's expected signal vs. background rates, how many days would WATCHMAN need to run to see a clear 3sigma deviation between the "reactor on" data set and "reactor off" data set?
 - Assume we have the proposed reactor operation schedule at either site
 - WATCHMAN detector performance simulated using RAT-PAC
- Boulby study still ongoing

REACTOR ON/OFF TRANSITIONS - FAIRPORT

- At the Fairport site, WATCHMAN would observe the Perry power plant's on/off cycle in less than 3 months
 - Statistically generated 100,000 experiments to set confidence levels on the day of observation
 - Fairport assumed schedule: Core off for 40 days, on for 700 days

Blind confirmation studies (i.e. no prior knowledge of the schedule) the next task

CONCLUSION

- Gadolinium-doped water Cherenkov detectors are a competitive detection medium for reactor monitoring
 - High IBD detection efficiency
 - Scalability to 100 kton 1Mton scales
- Potential testbed for additional detector technologies in a ~kton scale detector
 - Fast photosensors
 - Water-based liquid scintillators
- New physics measurements already made on the path to the WATCHMAN demonstration
 - Fast neutron flux vs. depth
 - First Gd-water demonstration at ~ton scale
- Sensitivity to confirming a reactor plant's given operation schedule at Fairport site investigated
 - Studies on measuring deviations from a given schedule upcoming
 - Boulby study and optimization underway
- Currently proposed to start WATCHMAN in 2018

WbLS Nanofiltration Teal Pershing (UC Davis) Conference of Science at SURF Material Science and LBT

RESOURCE SLIDES

AVERAGE IBDS/DAY FOR EACH SITE AS SIMULATED IN WATCHMAN

Values used in preliminary study shown Values generated using WATCHMAN's RAT-PAC as of June 2017

Boulby Site Values

"Photocoverage Cases": [{ "Photocoverage": 0.25, "Signal Contributions": { "Core 1" : 0.3699, "Core 2" : 0.3699, "Other Reacs": 0.1073, "Accidentals": 0.0996, "Fast N": 0.0832, "Radionuclides": 0.0145 }]

Fairport Site Values

UNCERTAINTIES FOR ON/OFF CYCLE CONFIRMATION

For either the "both cores on" or "one core off" data set...

$$\Gamma_{IBDs}(t) = \frac{N_{IBDs}}{t}$$

 Γ_{IBDs} – Average IBDs/Day according to all data taken up to that day

(cores + background)

t – time in days of data collected for this data set

At any day in the experiment, the uncertainty in this average is:

$$\sigma_{\Gamma} = \Gamma_{IBDs} \sqrt{\left(\frac{\sigma_{N}}{N}\right)^{2} + \left(\frac{\sigma_{t}}{t}\right)^{2}}$$
$$\sigma_{\Gamma} = \Gamma_{IBDs} \left(\frac{\sigma_{N}}{N}\right) = \Gamma_{IBDs} \left(\frac{\sqrt{N_{IBDs}}}{\Gamma_{IBDs} * t}\right)$$
$$\sigma_{\Gamma} = \frac{\sqrt{N_{IBDs}}}{t}$$

"Confirmation" of the reactor cycle is claimed when:

$$\Gamma_{ON} - \Gamma_{OFF} > 3\sigma_{TOT}$$

is true for 14 days in a row. σ_{TOT} is the "ON" and "OFF" data set average undertainties added in quadrature

GADOLINIUM PURIFICATION USING EGADS

- Gadolinium-doped water has been investigated for potential addition to Superkamiokande
- Evaluation of Gadolinium Action on Detector Systems (EGADS) developed in Kamioka mine
 - 200 ton Gd-doped water Cherenkov detector
 - $Gd_2(SO_4)_3$ diluted in DI water
 - Gd-compound + water purification system
- Separation of gadolinium compound and DI water for purification of water performed
 - 99.9% recovery of Gadolinium compound achieved in system
- Continuous operation and purification of Gd-doped water system ongoing
 - Will give a final benchmark on purification performance on longer timescales

[A1] Mori, Takaaki (for the SuperKamiokande Collaboration), "Status of the Super-Kamiokande gadolinium project", Nuclear **Instruments and Methods in Physics Research A** 732 (2013) 316–319

THE IBD SIGNAL, NO GADOLINIUM

- Delayed coincidence signal
 - Prompt light from positron Cherenkov radiation
 - Delayed (~100 μs later) 2.2 MeV signal from neutron capture
 - For water Cherenkov detectors, this energy range has numerous natural backgrounds

 e^{+} $r \rightarrow 2H + \gamma (2.2 \text{ MeV})$ $n + p \rightarrow 2H + \gamma (2.2 \text{ MeV})$

 ν_e