Dark Matter Searches at the LHC

Kristian Hahn
Northwestern University
on behalf of the ATLAS & CMS Collaborations

Topics in Astroparticle and Underground Physics
TAUP 2017, Sudbury ON, Canada
July 25, 2017
Complementary capabilities for observing DM interactions

Collider Production Direct Detection (DD) Indirect Detection (ID)
DM-Nucleon Scattering DM annihilation

WIMP DM falls under the LHC “lamppost” ...
- DM as a thermal relic implies weak-ish mass/interaction scales

Some of the benefits of collider searches:
- Excellent control of systematic uncertainties
- No velocity / p-wave suppression
- Possible resonant enhancement
- Possibility to characterize DM particle properties
Many BSM models provide DM candidates

- Eg: SUSY (nMSSM, cMSSM, ...), UED/ADD, Little Higgs ...
- Large numbers of parameters, wide range of phenomenology

Can we take a more general approach?

- Perform broad searches based on general DM phenomenology
- Use “models” that are simple as possible, even if they are incomplete (eg: EFT →)
- Turn as large a stone as possible ... mono-X!
Simplest mode of DM production *unobservable* @ LHC

Dark Matter is **DARK**

- Leaves no activity in the detector
- Nothing to trigger on / reconstruct above

“Mono-X” (or “MET+X”) includes “X” for viable detection

- X: quarks/gluons, photons, W/Z …

DM must instead recoil against *something* to become “visible”
Non-interacting particles escape the detector

- Their presence inferred from energy/momentum imbalance

(Transverse) analog of nuclear recoil in DD …

- Transverse → because final state particles can be lost in the beampipe

- \(E_T^{\text{miss}} = \) Negative vector sum of all visible pT

A well understood collider observable

- Wide use in SM measurements
Models used in the design and interpretation of DM searches

Need to balance model complexity with predictive accuracy ...

EFTs

UV-complete Models

Validity issues @ LHC ..
cf: 1307.2253, 1308.6799

To specific?
Theory baggage?
Models used in the design and interpretation of DM searches

Need to balance model complexity with predictive accuracy ...

- EFTs
- Simplified Models
- UV-complete Models

Validity issues @ LHC ..
cf: 1307.2253, 1308.6799

Just right?

Too specific?
Theory baggage?
Models used in the design and interpretation of DM searches

Need to balance model complexity with predictive accuracy ...

Simplified models: capture kinematics, lack completion

- Pair-produced DM Dirac fermions, χ
- Massive DM \leftrightarrow SM mediator, on/off-shell production
- Couplings: vector/axial/scalar/pseudo
- Minimal flavor violation
- Minimal mediator width: couples only to SM and χ

Only four parameters:
$$g_q, g_{DM}, m_{\chi}, M_{med}$$

LHC DM searches using simplified models/benchmarks from the LHC Dark Matter Forum: 1507.00966
Extraction of potential DM signals ...

In absence of excess: limit setting, model constraints

- NB: 95% CLs limits are standard in collider world

$m(Med)-m(DM)$ plane: provides natural representation of collider results

- Results shown as limit on signal cross section or on signal strength ($\mu = \sigma_{\text{obs}}/\sigma_{\text{th}}$)
- Fixed g_{DM} & g_{SM}
- All model assumptions (eg: mediator & DM type) specified
Comparison of collider results with (in)direct detection

- Recent focus of LHC Dark Matter Working Group (DMWG)
- Developed recommendations for collider/non-collider comparison

Translate collider limits to $\sigma_{\text{DM-N}}$ & σ_{rel}, rather than reverse

- Avoid subtleties and assumptions involved in mapping DD/ID to collider
- DD: vector/scalar (SI) axial (SD) mediators
- ID: pseudoscalar mediators

Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter

Antonio Boveia,1,* Oliver Buchmueller,2,* Giorgio Busoni,3 Francesco D’Eramo,4 Albert De Roeck,1,5 Andrea De Simone,6 Caterina Doglioni,7,* Matthew J. Dolan,3 Marie-Helene Genest,8 Kristian Hahn,9,* Ulrich Haisch,10,11,* Philip C. Harris,1 Jan Heisig,12 Valerio Ippolito,13 Felix Kahlhoefer,14,* Valentin V. Khoze,15 Suchita Kulkarni,16 Greg Landsberg,17 Steven Lowette,18 Sarah Malik,2 Michelangelo Mangano,11,* Christopher McCabe,19,* Stephen Mrenna,20 Priscilla Pani,21 Tristan du Pree,1 Antonio Riotta,11 David Salek,19,22 Kai Schmidt-Hoberg,14 William Shepherd,23 Tim M.P. Tait,24,* Lian-Tao Wang,25 Steven Worm26 and Kathryn Zurek27

Interpretation
Recent ATLAS & CMS DM Results

Focusing on the hadronic search channels

- Monojet, tt/bb + DM, dijet
- In the simplified model framework, these provide most of the DM reach at the LHC

Complete list of recent results in the backups
A generic & powerful DM search strategy at the LHC

- Assumes only that DM couples in someway to incoming quarks
- Require energetic recoiling jet to trigger detector

But no need to limit to a single recoiling jet ...

- The “monojet” search actually targets multijet + E_{T}^{miss} !
DM + hadronic decays of EWK bosons can also produce a multijet + E_T^{miss} signature … mono-V

- W/Z decay products will be **boosted** when DM recoil is significant
- Reconstruction algorithms can merge these into a ~small radius jet
- But can use jet grooming / substructure techniques to identify the underlying 2-prong nature
Monojet : general strategy

At least one central (|η| < 2.4), good-quality, high-pT (eg >250 GeV) jet

Require minimum Δφ separation between jets and E_T^{miss} to suppress misreconstruction BGs.

Veto additional objects: electrons, muons, tau leptons, photons, bjets ...

Significant E_T^{miss} (eg >200 GeV)

Dominant backgrounds from SM processes with real E_T^{miss} and/or leptons out of detector acceptance

- $Z(\nu\nu) + \text{jets}$, $W(\tau[qq'] \nu) + \text{jets}$, $W(l\nu) + \text{jets}$
- Bread & butter EWK processes @ the LHC
- Wealth of precise calculations & simulation tools available
Selections define signal enriched regions (SR) in data

- Residual backgrounds in these regions from events in tails of E_T^{miss} kinematic distributions
- Associated SM theory uncertainties are typically large here ...

BG dominated control regions (CR) help constrain SM rates & kinematics in the SRs

- Augment precise calculations of EW processes with measurements!
SR selection: large E_T^{miss},
≥ 1 high-p_T jet, $\Delta \phi > 0.5$ radian

- Mono-V: $p_{T}^{\text{AK8}}, E_T^{\text{miss}} > 250$ GeV, m_{jj} 65-105 GeV, $\tau_{12} < 0.6$ (“n-subjettiness”)
- Mono-jet: remaining events, $p_{T}^{\text{AK4}} > 100$ GeV, $E_T^{\text{miss}} > 250$ GeV

5 (categorized) SM control regions to constrain high-E_T^{miss} BGs

- Use observable analogues of the invisible SM processes
 - $Z(\mu\mu), Z(ee), W(\mu\nu), W(e\nu) + \text{jets}$, high-stat $\gamma + \text{jet}$
- Subtract visible signatures \rightarrow hadronic recoil, a proxy for E_T^{miss}
- Use NLO QCD + NLO EWK calculations to translate rates + distributions in CRs into SR predictions!

Extract signal from combined likelihood fit to E_T^{miss} distributions
Uncertainties & correlations on transfer factors (see 1705.04664)

- Incorporated as nuisance parameters in the fit
- Pure QCD effects: scale/normalization, recoil shape pT dependence, cross section ratios
- Pure EWK effects: missing NNLO, unknown Sudakov logs, NLL Sudakov approximation
- Combined multiplicatively, nuisance added for possible non-factorization

Control regions fit simultaneously with the signal regions

- Excellent post-fit agreement in CRs
Data in signal region consistent w/ post-fit SM expectations …
Limits on both spin-1 and spin-0 mediators

- Vector/Axial exclusion (this slide) up to 1.8 TeV
- Pseudoscalar (backup) up to 400 GeV
Reinterpret as invisible Higgs: BR(h → inv.) < 0.53 (0.4 exp.)

And recast as limits on SI/SD DM-nucleon cross section (1603.04156)

Low-mDM reach complementary to direct detection!
Similar monojet search strategy pursued in ATLAS:

- \(p_T^{AK4} , E_T^{\text{miss}} > 250 \text{ GeV}, \ \Delta \phi > 0.4 \text{ radian}, \ \text{vetos} \)
- Simultaneous binned likelihood fit to \(E_T^{\text{miss}} \)
- No mono-V category, dedicated mono-W search
- No Z(\text{ee}) + jets, \(\gamma + \text{jets} \) CRs, adds ttbar CR

Good agreement in Z(ll)+jets & W(l\nu)+jets control regions
And good agreement in the signal region ...
Limits on both spin-1 and spin-0 mediators

- Axial-vector exclusion up to 1.55 TeV
- Not yet sensitive to pseudoscalars
Monojet drives sensitivity to spin-1 mediator scenarios

- Picture more nuanced for spin-0 models ...
 - MFV → mediator has Yukawa coupling
 - Monojet through heavy quark loops

- Implies tree-level couplings to top and bottom
 - Same mediator as in monojet
 - Yukawa enhancement → tt+DM competitive with monojet at low mMed!

- Can also anticipate a “monotop” signature ...
 - Assumes specialized signal model (see backup)

DM+ heavy quarks = rich signatures!

- tt final states: all-hadronic, semileptonic, dileptonic
 - Produces leptons, high-pT jets, b jets, E_{T}^{miss}
- Many experimental handles → many viable DM search strategies

Backgrounds: mostly SM ttbar (with a lost lepton), single top, ttV
SUSY stop searches also looking for the \(\text{tt} + E_T^{\text{miss}} \) signature

- These generally involve many SRs & CRs to explore wide range of SUSY scenarios
- Leverage SUSY observables (eg: \(mT^2 \)) optimized for selecting \(E_T^{\text{miss}} \) from decays of heavy particles
- Extend SUSY search with regions that target DM production, add DM interpretation

\[\text{ATLAS tt/bb + DM} \]

\[\text{ATLAS-CONF-2016-076 (13.3 fb}^{-1}) \]

\[\text{ttbar (dilepton) + } E_T^{\text{miss}} \]
Dedicated $bb+E_{T}^{miss}$ search

- Sensitive to models (eg: 2HDM w/ large $\tan\beta$) in which coupling to down-type quarks enhanced
- Select events with large pT imbalance between 2 high-pT b-tagged jets
- 3 CRs to control Z+jets, W+jets and ttbar

Update: tt(semileptonic)$+E_{T}^{miss}$ search

- DM categories provide sensitivity to low (~20 GeV) and high (~300 GeV) mass DM mediators
- New SRs use boosted top-tagging discriminant to identify hadronic decays of high-pT top quarks
- ttbar normalized via CR fit, signal extraction from 3 bin cut & count analysis
ATLAS tt/bb + DM Limits

Scalar

- **ATLAS Preliminary**
-

Pseudoscalar

- **ATLAS Preliminary**
 - Observed 95% CL
 - Expected 95% CL
 - Theory unc. on $\sigma(g=1.0)$

bb

- **ATLAS Preliminary**
 - Expected $\pm 1\sigma$
 - Expected $\pm 2\sigma$

tt semileptonic

- **ATLAS Preliminary**
 - Observed 95% CL
 - Expected 95% CL

ATLAS tt/bb + DM Limits

Scalar

- **ATLAS Preliminary**
 - Observed limit, $g=3.5$
 - Expected limit, $g=3.5 (\pm 1\sigma_{\exp})$
 - Scalar mediator

Pseudoscalar

- **ATLAS Preliminary**
 - Observed limit, $g=3.5$
 - Expected limit, $g=3.5 (\pm 1\sigma_{\exp})$
 - Scalar mediator
ATLAS tt/bb + DM Limits

Pseudoscalar exclusion for mMed < 220 GeV
Combined search using all \(\text{tt} + E_T^{\text{miss}} \) and \(\text{bb} + E_T^{\text{miss}} \) channels

- \(E_T^{\text{miss}} > 200 \) for bb & all-hadronic tt, \(E_T^{\text{miss}} > 160 \) GeV for semileptonic tt, \(E_T^{\text{miss}} > 50 \) GeV for dileptonic tt
- Employs novel resolved top quark tagger to reconstruct low/moderate pT hadronic decays
 - Top pT is soft in for mediator masses for which there is LHC sensitivity
 - BG from SM tt with missing lepton
 - Categorize signal and bkg according to number of top tags
- Simultaneous \(E_T^{\text{miss}} \) fit using 8 SRs + 19 CRs

Search uses just 2.2 fb-1 from Run2
- Analysis of full 35.9 fb-1 in progress
CMS tt/bb + DM Limits

2.2 fb⁻¹ (13 TeV)

Scalar, Dirac, \(g_\chi = 1 \), \(m_\chi = 1 \) GeV

- Observed limit 95% CL
- Expected limit 95% CL
- \(b\bar{b} + p_{T}^{miss} \) (\(b\bar{b} + \chi \) only)
- \(b\bar{b} + p_{T}^{miss} \)
- Dileptonic \(t\bar{t} + p_{T}^{miss} \)
- \(1+\text{jets} + p_{T}^{miss} \)
- All-hadronic \(t\bar{t} + p_{T}^{miss} \)

CMS

Upper limit on \(\mu = \sigma / \sigma_{TH} \)

2.2 fb⁻¹ (13 TeV)

Pseudoscalar, Dirac, \(g_\chi = 1 \), \(m_\chi = 1 \) GeV

- Observed limit 95% CL
- Expected limit 95% CL
- \(b\bar{b} + p_{T}^{miss} \) (\(b\bar{b} + \chi \) only)
- \(b\bar{b} + p_{T}^{miss} \)
- Dileptonic \(t\bar{t} + p_{T}^{miss} \)
- \(1+\text{jets} + p_{T}^{miss} \)
- All-hadronic \(t\bar{t} + p_{T}^{miss} \)

CMS

Upper limit on \(\mu = \sigma / \sigma_{TH} \)

Full combination, scalar

Pseudoscalar

Full combination, pseudoscalar
Direct Mediator Searches

If mediator couples to quarks, then also decay to SM particles

- Search for the DM mediators directly via traditional LHC “bump hunts”
 - Dijet (+ISR), dilepton, di-bjet, etc … eg:

 Dijet : 15.7 fb⁻¹ ATLAS-CONF-2016-069, 27 & 36 fb⁻¹ CMS-PAS-EXO-16-056
 Dijet angular, 3.6 fb⁻¹ (ATLAS) PLB 754 (2016) 302-322, 36 fb⁻¹ CMS-PAS-EXO-16-046
 Boosted dijet : 3.2 fb⁻¹ (bjets) ATLAS-CONF-2016-031, 36 fb⁻¹ CMS-PAS-EXO-17-001
 Dilepton :: 36 fb⁻¹ (ATLAS) 1707.02424, 2.9+19.7 fb⁻¹ (CMS) PLB 768 (2017) 57

- New techniques (data scouting [CMS], Trigger Level Analysis [ATLAS]) allows searches to now push to lower mediator masses

- Dijet search results below …
Comprehensive picture of LHC sensitivity to DM simplified models

- Axial-vector mediator shown here (see ATLAS Exotica Summaries)

Axial-vector mediator, Dirac DM

\[g_q = 0.25, \ g_\perp = 0, \ g_{DM} = 1 \]

All limits at 95% CL
Collider DM Summaries

Comprehensive picture of LHC sensitivity to DM simplified models

- Axial-vector mediator shown here (see CMS DM Summaries)

![Graph showing mediator mass and dark matter mass](image)

CMS Preliminary

LHCP 2017

- $M_{\text{Med}} = 2 \times m_{\text{DM}}$
- $\Omega_c \, h^2 \geq 0.12$

Exclusion at 95% CL

- **Observed**
- **Expected**

- Dijet (35.9 fb$^{-1}$) [EXO-16-056]
- Boosted dijet (35.9 fb$^{-1}$) [EXO-17-001]
- DM + $j/V(qq)$ (35.9 fb$^{-1}$) [EXO-16-048]
- DM + γ (12.9 fb$^{-1}$) [EXO-16-039]
- DM + $Z(\ell\ell)$ (35.9 fb$^{-1}$) [EXO-16-052]
Robust program of $E_T^{\text{miss}} + X$ DM searches at the LHC

Run 2 results pushing into new territory, limits on

- Multi-Tev spin-1 mediators
- Low-mass spin-0 mediators

Complementary strengths vs direct/indirect detection

On the horizon:

- Large bump in stats for several searches
- Stronger interplay between DM channels
- New methods for treating SM systematics (eg: arxiv: 1705.04664)
- Interpretations with somewhat-less-simplified models (eg: 1701.07427)
“SOMEBODY CALL FOR BACKUP!”
CMS mono-X Searches

<table>
<thead>
<tr>
<th>X</th>
<th>Dataset</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>jet + hadronic V</td>
<td>36.1 fb-1</td>
<td>EXO-16-048</td>
</tr>
<tr>
<td>photon</td>
<td>12.9 fb-1</td>
<td>1706.03794</td>
</tr>
<tr>
<td>Z(ll)</td>
<td>35.9 fb-1</td>
<td>CMS-EXO-16-052</td>
</tr>
<tr>
<td>Higgs (yy)</td>
<td>36.1 fb-1</td>
<td>CMS-EXO-16-054</td>
</tr>
<tr>
<td>Higgs (bb), with yy</td>
<td>2.3 fb-1</td>
<td>1703.05236</td>
</tr>
<tr>
<td>tt (hadronic + semileptonic + dileptonic) & bb</td>
<td>2.2 fb-1</td>
<td>1706.02581</td>
</tr>
<tr>
<td>t hadronic</td>
<td>36.1 fb-1</td>
<td>EXO-16-051</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Direct Mediator Production</th>
<th>Dataset</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>dijets</td>
<td>36.1 fb-1</td>
<td>CMS-EXO-16-056</td>
</tr>
<tr>
<td>dijets (angular)</td>
<td>36.1 fb-1</td>
<td>CMS-EXO-16-046</td>
</tr>
<tr>
<td>boosted dijets</td>
<td>36.1 fb-1</td>
<td>CMS-EXO-17-001</td>
</tr>
<tr>
<td>dilepton</td>
<td>13.1 fb-1</td>
<td>CMS-EXO-16-031</td>
</tr>
</tbody>
</table>
ATLAS Mono-X Searches

<table>
<thead>
<tr>
<th>X</th>
<th>Dataset</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>jet</td>
<td>36.1 fb-1</td>
<td>ATLAS-CONF-2017-060</td>
</tr>
<tr>
<td>photon</td>
<td>36.1 fb-1</td>
<td>EPJC 77 (2017) 393</td>
</tr>
<tr>
<td>W & Z (hadronic)</td>
<td>3.2 fb-1</td>
<td>PLB 763 (2016) 251</td>
</tr>
<tr>
<td>Z (leptonic)</td>
<td>36.1 fb-1</td>
<td>ATLAS-CONF-2017-040</td>
</tr>
<tr>
<td>Higgs (yy)</td>
<td>36.1 fb-1</td>
<td>1706.03948</td>
</tr>
<tr>
<td>Higgs (bb)</td>
<td>36.1 fb-1</td>
<td>1707.01302</td>
</tr>
<tr>
<td>tt (hadronic)</td>
<td>36.1 fb-1</td>
<td>ATLAS-CONF-2016-077</td>
</tr>
<tr>
<td>tt (semileptonic)</td>
<td>36.1 fb-1</td>
<td>ATLAS-CONF-2017-037</td>
</tr>
<tr>
<td>tt (dilepton)</td>
<td>13.3 fb-1</td>
<td>ATLAS-CONF-2016-076</td>
</tr>
<tr>
<td>bb</td>
<td>13.1 fb-1</td>
<td>ATLAS-CONF-2016-086</td>
</tr>
</tbody>
</table>

Direct Mediator Production

<table>
<thead>
<tr>
<th>X</th>
<th>Dataset</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>dijets</td>
<td>3.5+33.5 fb-1</td>
<td>1703.09127</td>
</tr>
<tr>
<td>dijet ISR</td>
<td>15.5 fb-1</td>
<td>ATLAS-CONF-2016-070</td>
</tr>
<tr>
<td>dijet TLA</td>
<td>3.4 fb-1</td>
<td>ATLAS-CONF-2016-030</td>
</tr>
<tr>
<td>dilepton</td>
<td>36.1 fb-1</td>
<td>ATLAS-CONF-2017-027</td>
</tr>
</tbody>
</table>
Monojet candidate at $\sqrt{s} = 13$ TeV
More CMS summary plots
Vector mediator
Dirac DM
\(g_{DM} = 1.0 \)
\(g_q = 0.25 \)
\(g_l = 0 \)
CMS Preliminary

Axial-vector mediator
Dirac DM
$g_{DM} = 1.0$
$g_q = 0.25$
$g_l = 0$

LHCP 2017

$M_{Med} = 2 \times m_{DM}$

$\Omega_c h^2 \geq 0.12$

Exclusion at 95% CL
- Observed
- Expected

- Dijet (35.9 fb$^{-1}$) [EXO-16-056]
- Boosted dijet (35.9 fb$^{-1}$) [EXO-17-001]
- DM + j/V(qq) (35.9 fb$^{-1}$) [EXO-16-048]
- DM + γ (12.9 fb$^{-1}$) [EXO-16-039]
- DM + Z(II) (35.9 fb$^{-1}$) [EXO-16-052]
More ATLAS summary plots
DM Simplified Model Exclusions

ATLAS Preliminary July 2017

- **Dijet**
 - $\sqrt{s} = 13$ TeV, 37.0 fb$^{-1}$

- **Dijet 8 TeV**
 - $\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$

- **Dijet TLA**
 - $\sqrt{s} = 13$ TeV, 3.4 fb$^{-1}$
 - ATLAS-CONF-2016-030

- **Dijet + ISR**
 - $\sqrt{s} = 13$ TeV, 15.5 fb$^{-1}$
 - ATLAS-CONF-2016-070

- **$E_T^{miss} + \gamma$**
 - $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$

- **$E_T^{miss} + \text{jet}$**
 - $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
 - ATLAS-CONF-2017-060

- **$E_T^{miss} + Z$**
 - $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
 - ATLAS-CONF-2017-040

Vector mediator, Dirac DM

- $g_q = 0.25$, $g_l = 0$, $g_{DM} = 1$
- All limits at 95% CL
CMS Mono-top

non-resonant model

\[g_V = 0.25 \quad g_\chi = 1 \]

resonant model

\[a_q = b_q = 0.1 \quad a_{1/2} = b_{1/2} = 0.2 \]
CMS tt/bb + DM Limits

Better sensitivity vs monojet for light spin-0 mediators!
SI/SD Translation

\[\sigma_{SI}^0 = \frac{9 \, g_{DM}^2 \, g_q^2 \, \mu_{n\chi}^2}{\pi \, M_{med}^4} \]

\[\approx 1.1 \times 10^{-39} \, \text{cm}^2 \cdot \left(\frac{g_{DM} \, g_q}{1} \right)^2 \left(\frac{1 \, \text{TeV}}{M_{med}} \right)^4 \left(\frac{\mu_{n\chi}}{1 \, \text{GeV}} \right)^2 . \]

\[\sigma_{SD}^0 = \frac{3 \, g_{DM}^2 \, g_q^2 (\Delta_u + \Delta_d + \Delta_s)^2 \, \mu_{n\chi}^2}{\pi \, M_{med}^4} \]

\[\approx 4.6 \times 10^{-41} \, \text{cm}^2 \cdot \left(\frac{g_{DM} \, g_q}{1} \right)^2 \left(\frac{1 \, \text{TeV}}{M_{med}} \right)^4 \left(\frac{\mu_{n\chi}}{1 \, \text{GeV}} \right)^2 . \]
\[\Gamma_{\text{min}}^{V} = \frac{g_{\chi}^{2} M_{\text{med}}}{12\pi} \left(1 + \frac{2m^{2}_{\chi}}{M^{2}_{\text{med}}} \right) \beta_{DM} \theta(M_{\text{med}} - 2m_{\chi}) \]

\[+ \sum_{q} \frac{3g_{q}^{2} M_{\text{med}}}{12\pi} \left(1 + \frac{2m^{2}_{q}}{M^{2}_{\text{med}}} \right) \beta_{q} \theta(M_{\text{med}} - 2m_{q}) , \]

\[\Gamma_{\text{min}}^{A} = \frac{g_{\chi}^{2} M_{\text{med}}}{12\pi} \beta_{DM}^{3} \theta(M_{\text{med}} - 2m_{\chi}) \]

\[+ \sum_{q} \frac{3g_{q}^{2} M_{\text{med}}}{12\pi} \beta_{q}^{3} \theta(M_{\text{med}} - 2m_{q}) . \]

\[\Gamma_{\phi,a} = \sum_{f} N_{c} \frac{y_{f}^{2} g_{q}^{2} m_{\phi,a}}{16\pi} \left(1 - \frac{4m^{2}_{f}}{m^{2}_{\phi,a}} \right)^{x/2} + \frac{g_{\chi}^{2} m_{\phi,a}}{8\pi} \left(1 - \frac{4m^{2}_{\chi}}{m^{2}_{\phi,a}} \right)^{x/2} \]

\[+ \frac{\alpha_{s}^{2} y_{i}^{2} g_{q}^{2} m_{\phi,a}^{3}}{32\pi^{3} v^{2}} \left| f_{\phi,a} \left(\frac{4m^{2}_{i}}{m^{2}_{\phi,a}} \right) \right|^{2} \]

\[f_{\phi}(\tau) = \tau \left[1 + (1 - \tau) \arctan^{2} \left(\frac{1}{\sqrt{\tau - 1}} \right) \right] , \]

\[f_{a}(\tau) = \tau \arctan^{2} \left(\frac{1}{\sqrt{\tau - 1}} \right) \]