

Considerations on Underground Laboratories

Aldo Ianni, Laboratorio Subterraneo de Canfranc and LNGS

Outline

+ Main features of <u>Deep</u> <u>Underground</u> <u>Laboratorie</u> worldwide

- Main experimental activities being reviewed in this meeting
- Main ideas and programs in physics being reviewed in this meeting
- Some complementary information being reviewed in this talk
- + Expansions and new excavations
- + Synergy and networks for DULs
- + DULs as multidisciplinary research infrastructures

DULs worldwide

+ DULs: more than 1000 m.w.e. overburden

- + **13** infrastructures (**DULs**) in operation at present (<u>north hemisphere!</u>)
- + One soon under major expansion (SURF)
- + Three upcoming DULs (<u>two in the south</u> <u>hemisphere</u>)

Map of DULs worldwide

Aldo Ianni, TAUP 2017

Some features for the existing DULs

	SNOLab	LNGS	LSC	Boulby	LSM	Callio Lab	Baksan	SURF	CJPL- I/II	Kamioka	Y2L
Date of creation	2003 (1991)	1987	2010	1989	1982	1995	1967	2007 (1967)	2009/ 2014	1983	2003 A6 2014 A5
Personnel	100	106	12	6	12	13	227	125	20	94	4
Surface U/S [m ²]	5350/ 3100	17000/ 95000	1600/ 2550	1700/ 400	400	220	1600/ 10000	1900/ 190	8000	15000/ 3000	300/ 60
Volume [m ³]	30000	180000	10000	7200	3500	1000*	23000	7160	4000/ 300000	150000	5000
Depth [m]	2070	1400	850	1100	1700	1440	1700	1500	2400	1000	700
Access [V or H]	V	Н	Н	V	Н	V / drive in	Н	Н	Н	Н	Drive in
Makeup Air [m³/h]	12000	35000- 60000	20000	300	5500	3600	1440	510000	-	6000	3300
Air change/day	10	5-8	48	24	38	7	-	144 (LUX)	-	6	15
Muon flux [m/m²/s]	3.1 10 ⁻⁶	3 10-4	3 10 ⁻³	4 10 ⁻⁴	4.6 ₅ 10 ⁻	1 10 ⁻⁴	3 10 ⁻⁵	5.3 10 ⁻⁵	2 10 ⁻⁶	10 ⁻³	4 10 ⁻³
Radon [Bq/m³]	130	80	100	<3	15	70	40	300	40	80	40
Cleanliness	2000 or better	Only in sector	Only in sector	10000	ISO9	Only in sector	Only in sectors	3000	Only in sectors	Only in sectors	Only in sectors

* Only for deepest level

Feature for the new DULs

	SUPL	ARF	ANDES	
Expected to be in operation	end of 2018	mid-end of 2019	2027	
Personnel	3	20	_	
Access	Drive in	V / drive in	Н	
Volume [m ³]	3025	47000	70000	
Surface [m ²]	350	2000	2800	
Outside surface [m ²]	100	1000	Foreseen building	
Depth [m]	1025	1100	1750	
Muon Flux [μ/m²/s]	3.7 10 ⁻⁴	~10 ⁻³	~5 10 ⁻⁵	
Makeup air [m³/h]	From the mine through Rn purification	7840	-	
Air change/day	96	6	-	
Cleanliness requirement	Yes (SNOLab style)	Only in sectors	_	

Underground volume in DULs

Expansion and new excavations underway

+ SURF: new excavation for DUNE + Excavation begins in 2019 and last 3 yr

- see J. Heise this meeting
- + ARF: new laboratory in South Korea
 + Ready by mid-end 2019
- + SUPL: new laboratory in Australia
 + Ready by end of 2018
- + ANDES: new laboratory Chile-Argentina
 + ready by 2027

Excavation for DUNE at SURF

Astroparticle Research Laboratory (ARF) – South Korea

Preliminary design of Mt.Yemi 990m **Over view of Handeok Mine** Underground Laboratory EL. 800m Intrance of Mine 145200-0 \$2000.00 23951,56 EL. 600m Expr. Hall B Overburden EL. 400m 1100m **1st Shaft** 200m Znd Shaf EL. 200m Expr. Hall A Iron Ore EL. 0m IBS U.L.(EL.-110m) IBS tunnel 50746.43 Ore P EL. -200m Ramp Way ~6km(S=8%) Start Point (EL. -30m) Two experimental halls (total area ~2000 m²) 1100 m below surface.

• Access: cage + driveway (through running mine)

ANDES: Agua Negra Deep Experiment Site

Main hall (21 m x 23 m x 50 m)

- Secondary hall
 (16 m x 14 m x 40 m)
- Offices and small labs
- Low radiation pit
- Large single experiment pit (~ Ø 30 m, 30 m tall)
- Vertical depth: 1775 m, omnidirectional: 1675 m
- Total: 70 000 m³ laboratory volume (+ 35 000 m³ access tunnels)

Rock Studies (from test samples ~600 m deep)

Preliminary data (Bq/kg)

	Basalt	Andesite	Rhyolite 1	Rhyolite 2
²³⁸ U	$\textbf{2.6} \pm \textbf{0.5}$	$\textbf{9.2}\pm\textbf{0.9}$	14.7 ± 2.0	11.5 ± 1.3
²³² Th	$\textbf{0.94} \pm \textbf{0.09}$	$\textbf{5.2} \pm \textbf{0.5}$	$\textbf{4.5} \pm \textbf{0.4}$	$\textbf{4.8} \pm \textbf{0.5}$
⁴⁰ K	50 ± 3	$\textbf{47} \pm \textbf{3}$	57 ± 3	52 ± 3

More information at http://andeslab.org/

Network between DULs [1]

- DULIA: attempt to establish a network between LNGS, LSC, LSM, Boulby and CallioLab. Purpose:
 - + to enhance collaboration between infrastructures
 - to standardize procedures (experiment safety assessment, experimental approval, environmental policy ...)
- SNOLab + LNGS: put forward a proposal for an Underground Global Research Infrastructure (under evaluation)
- + Share load of work for international collaborations
 - + an example: screening of gadolinium salt for SuperKamiokande-Gd
 - + At work Kamioka, LSC, Boulby
 - Under discussion LNGS

Network between DULs [2]

- + Some physics case can profit of a network between DULs
 - Deploy in DULs similar detectors to enhance the sensitivity for a specific research
 - An example: CYGNUS(TPC) global network
- + Network for outreach activities in DULs
 - An example
 - LNGS and LSC have developed and deployed muon telescopes in both sites

OGO IMAGE

DATA VIEW 👘 💌

ded	Event Data and Time Unknown	Event ID ST98C1	Event Local 0020050080 200600C01 00000

100

XYZ VIEW

X Plane

Y Plane

Z Plane

DISTRIBUTION = +

Overburden characteristic [1]

- + Under a flat surface (SNOLab, CallioLab, SURF)
- + Under a mountain (Baksan, LNGS, LSC, LSM, CJPL)
 - Underground cosmic-ray muons angular dependence can be important

Overburden characteristic [2]

Length of tunnel (m)

ANDES mountain profile

Muon Flux in DULs

Cleanliness

+ Mine environment or small volume underground area

- Specific protocol to enter lab area (SNOLab, Boulby, SURF, SUPL)
- + With some basic protocol it is possible to achieve good conditions
 - SNOLab class 2000 or better throughout the whole volume with a more demanding protocol
 - + SURF class ~3000
 - + BOULBY main area ISO7
 - + All: dedicated personnel for regularly cleaning activity

+ Large volume, not mine environment (LNGS, CJPG)

+ Specific protocol in sectors (clean rooms)

+ Medium size volume, not mine environment (LSC, LSM)

- + Specific protocol (cleaning shoes, regular floor cleaning ...)
- + Example: at the LSC particulate counting in different areas ~ ISO7

Boulby new laboratory ISO7

Access protocols for cleanliness in Boulby and SURF are similar

Monitoring environmental changes

- + Seasonal cosmic-ray muons change
- + Radiation and seasonal variation of neutron background underground
 - Need to put more effort into this task
- + Seasonal dependence of radon in air
- Other parameters such as humidity, particulate counting, rock stability ...

Main research supporting facilities in DULs

- + HPGe screening facilities (in all labs) + alpha counting + ICP-MS
- + Cu electro-forming production (SURF, LSC, CJPL, SNOLab, ARF)
- + Clean rooms (ISO5, ISO6)
- + Radon abatement systems (1000x Rn reduction)
 - In operation at LNGS, LSC, Y2L, LSM (100 300 m³/h)
 - + To be installed at SURF, SNOLab, CJPL, SUPL, ARF
- + Radon-free clean rooms
 - + Present at LNGS
 - + To be installed at SURF, SNOLab ...
- + Sensitive radon detectors (<mBq/m³) for emanation and monitoring
 - + Monitoring blanket N2 gas in the Borexino-CTF, Xenon1t water tanks ...
- + Crystal growing facility (ARF,CJPL)

Radon-free clean room for DarkSide-50 at the LNGS

DarkSide-50 protocol:

- 1. Cleaning and conditioning of TPC components in 500 mBq/m³ CR
- 2. Assembling and deploying of TPC in 10 mBq/m³ CR

HPGe screening facilities in DULs

	SNOLab	LNGS	LSC	SURF	LSM	Boulby	Baksan	Kamioka	CJPL
Number of HPGe detectors	5	12(+1)	7	4+1	18+6	4+3	2+2	6	10

✓ Sensitivities

- Commercial detectors 0.5 1 mBq/kg in U, Th
- Custom 10-50 μBq/kg

✓ Overall DULs have collected some 81 HPGe which corresponds to about 8 M€

✓ These detectors used to support screening for experiments and environmental research and other requests from Research Institutions not directly related to DULs

✓ Build a global radioactivity database

Low Background Facility @ SNOLab

HPGe (4→7) detectors at Bou class ISO6

M

0

HPGe detectors at LNGS

HPGe detectors at SURF, ISO6

BLBF LBNL SURF

Cu e-forming facility

Used at SURF, LSC, CJPL, SNOLab

An example from the LSC

sample	²³⁸ U [ppt]	²³² Th [ppt]
OFHC stored underground at the LSC	0.20±0.01	1.00±0.06
e-formed Cu at the LSC	<0.05	0.040±0.002

DULs as multidisciplinary Research Infrastructures

+ Geophysics

- Underground environment enhance the sensitivity to local and global phenomena using data from strain meters and seismometers
 - Local: slow earthquakes, hydrogeologically-induced deformations, sesonal charge and discharge of aquifiers, ocean loading tides
 - Global: free oscillations of the Earth induced by large quakes, background free oscillations due to atmospheric environment, free core nutation ...
- Ring laser in underground for Lense-Thirring effect measurement (see A. di Virgilio this meeting)
- DULs could provide data from different locations worldwide
- Muon tomography for deep geological mapping applications (Boulby)

+ Biology

+ See: <u>DULIA-bio Workshop</u> held at the LSC in Oct 2015

(https://indico.cern.ch/event/436589/)

Nominal resolution $\Delta l/l < 10^{-12}$ Maximum $\Delta l/l$ nominally unlimited Nominal bandwidth ≈ 200 Hz to 0 Hz Maximum strain rate few 10^{-7} s⁻¹ lne $\iff \Delta l/l = 10^{-9}$ Strain meters coupled with seismometers

Gran Sasso interferometers (LNGS, Italy, 1994-2013)

Baseline length: 90 m

Canfranc interferometers (LSC, Spain, 2011-present)

Baseline length: 70 m

GINGERino: deep underground ring laser

GINGER-ino (INFN-LNGS)+ Seismometers (INGV)

See A. D Virgilio this meeting

Roma, 17/07/17

He-Ne laser at 633 nm Square cavity, L=3.6 m Mirrors r.o.c= 4 m Earth rotation Sagnac bias: **fs=280.4 Hz**

Angela Di Virgilio

Seismometers network at the LSC

Conclusions

- + 11+3 underground multidisciplinary research infrastructures equipped with high technology detectors
- + ~720 on-site staff to support activities in DULs worldwide
- + Impressive global radio-purity screening power
- + Unique opportunity to exploit new technologies
- + Great scientific program (see this meeting)
- Opportunity to develop a global network to enhance and spread out our work and achievements

Acknowledgment

- + Nigel Smith (SNOLab), Richard Ford (SNOLab), Ian Lawson (SNOLab)
- + Sean Paling (Boulby),
- + Fabrice Piquemal (LSM), Masayuki Nakahata (Kamioka),
- + Stefano Ragazzi (LNGS), Alba Formicola (LNGS), Matthias Laubenstein (LNGS), Massimiliano de Deo (LNGS), Attanasio Candela (LNGS)
- + Alberto Bayo (LSC), Sergio Fernandez (LSC)
- + Jaret Heise (SURF), Valery Kuzminov (Baksan),
- Moo Hyun Lee (Y2L, ARF),
- + Jari Joutsenvaara (CallioLab), Ville Isoherranen (CallioLab),
- + Qian Yue (CJPL)
- + Xavier Bertou (ANDES), Elisabetta Barberio (SUPL)
- + Luca Crescentini, Angela di Virgilio

More on background comparison

	SNOLab	LNGS	LSC	SURF	LSM	Boulby	Baksan	CJPL
Gamma- rays flux [cm ⁻² s ⁻¹]		0.3-1	1		4	1	1	
Thermal neutrons [cm ⁻² s ⁻¹]	5 10 ⁻⁶	4 10 ⁻⁶	3.5 10 ⁻⁶	8 10 ⁻⁶	1 10 ⁻⁶	<1.5 10 ⁻⁶	6 10 ⁻⁶	4 10 ⁻⁶

Depth for DULs [m]

An example: radon abatement system and radon monitoring detector at the LSC

Aldo Ianni, TAUP 2017