

Université Laurentienne Laurentian University

Latest EXO-200 Results

Caio Licciardi for the EXO-200 Collaboration Carleton University TAUP 2017, Sudbury

¹³⁶Xe $0\nu\beta\beta$

- 0vββ in ¹³⁶Xe
 - ¹³⁶Xe → ¹³⁶Ba⁺⁺ + 2e⁻, Q-value 2457.83±0.37 keV

- Xenon is used both as the source and the detection medium
- Liquid xenon (LXe) time projection chamber (TPC)
 - Full 3D reconstruction of energy depositions
- Monolithic detector provides excellent background rejection capabilities
- Promising future for nEXO, tonne-scale LXe TPC
 - nEXO: a tonne-scale next-generation double-beta decay experiment, R. MacLellan
 - Progress in Barium tagging at the single atom/ion level for nEXO, C. Chambers
 - Results of nEXO detector development, T. Brunner
 - Background modeling for the nEXO neutrinoless double beta decay experiment, J. Orrell (poster)
 - The nEXO radioassay program, R. MacLellan (poster)
- This talk: new results from EXO-200!

M. Redshaw et al, PRL 98, 053003 (2007)

University of Alabama, Tuscaloosa AL, USA — M Hughes, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan University of Bern, Switzerland — J-L Vuilleumier University of California, Irvine, Irvine CA, USA — M Moe California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada — I Badhrees, W Cree, R Gornea, K Graham, T Koffas, C Licciardi, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, D Harris, A Iverson, J Todd, T Walton Drexel University, Philadelphia PA, USA — MJ Dolinski, EV Hansen, YH Lin, Y-R Yen Duke University, Bloomington IN, USA — JB Albert, S Daugherty Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, A Robinson, U Wichoski University of Maryland, College Park MD, USA — C Hall University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, A Pocar

McGill University, Montreal QC, Canada – T Brunner, Y Ito, K Murray

The EXO-200 Collaboration

SLAC National Accelerator Laboratory, Menlo Park CA, USA — M Breidenbach, R Conley, T Daniels, J Davis, S Delaquis, A Johnson, LJ Kaufman, B Mong, A Odian, CY Prescott, PC Rowson, JJ Russell, K Skarpaas, A Waite, M Wittgen University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan Friedrich-Alexander-University Erlangen, Nuremberg, Germany G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, M Wagenpfeil, G Wrede, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, T Tolba, L Wen, J Zhao ITEP Moscow, Russia — V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, G Li, A Schubert, M Weber, S Wu Stony Brook University, SUNY, Stony Brook, NY, USA — K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany — W Feldmeier, P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, R Krücken, Y Lan, F Retière, V Strickland Yale University, New Haven CT, USA — Z Li, D Moore, Q Xia

TPC

- EXO-200 consists of a radiopure TPC filled with enriched LXe (80.6%)
- Located at Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM, USA
- High-voltage applied between cathode and anodes (opposite ends)
- Two measurements of energy deposited in event
 - Scintillation light (178 nm), by large avalanche photo-diodes (APDs)
 - Ionization charge, by 2 wire grids (induction and collection)

Phase-I

Phase-II

- Sep 2011 to Feb 2014
 - Total live time 596.7 days
- Selected physics results
 - Most precise 2vββ measure
 - Phys. Rev. C 89, 015502 (2013)
 - Stringent $0\nu\beta\beta$ searches
 - Nature **510**, 229 (2014)
 - Sensitivity $T_{1/2}^{0\nu\beta\beta} > 1.9x10^{25}$ yr (90%CL)

- Access regained in 2015 after stop imposed by WIPP accidents
- Jan to May 2016
 - Hardware upgrades
- HV raised by 50% in May 2016
 - Live time 271.8 days
- Physics results: this talk!

Detector Upgrades

- Front end readout electronics
 - Reduce APD read-out noise
- Increase of HV
 - -8kV → -12 kV
- Effect in energy resolution:
 - Phase-I: $\sigma/E(Q) = 1.38\%$
 - Phase-II: σ/E(Q) = 1.23%, steady

• System to suppress radon in air gap

EXO-200 Clean Room Module 1

 Direct air sampling shows radon levels reduced in the gap by >10x

Energy

- Rejection of α particles (vs β/γ) using light/charge ratio
- Using anti-correlation between charge and scintillation response
 - "Rotated" energy provides optimal resolution in the energy of interest

Scintillation vs. ionization, ²²⁸Th calibration:

Reconstructed energy, ²²⁸Th calibration:

Position Discrimination

- ββ deposits energy at single location
- Channel pitch is 9 mm in X/Y,
 Z (time) resolution is ~6 mm
- SS fraction is ~20% in the energy region of interest

Improved y-background Rejection

• Additional discrimination in SS using *spatial distribution* and *cluster size*

- Entering γ-rays rate is exponentially reduced by LXe self-shielding, provides independent measurement of γ-backgrounds
 - standoff-distance
- Size of individual cluster estimated from:
 - pulse rise time (longitudinal direction)
 - number of wires with collection signal (transverse)

LXe self-shielding:

Optimal 0vββ Discrimination

Optimize SS discriminators into a more powerful one

- Energy •
- SS/MS •
- SS events MS events BOT Q_{ββ} Energy BDT \rightarrow ~15% sensitivity improvement

۲

Energy

¹³⁷Xe β-decay Veto

- Tag neutron capture on 136 Xe events using both veto panel and deexcitation prompt γ s information to suppress 137 Xe β -decays
- Veto same TPC half of the γ signal for $5xT_{1/2} = 19.1$ min
 - ~25% rejection
 - Phase-I: 7.0 cts \rightarrow 4.4 cts
 - Exposure loss ~3%

Analysis Approach

- "Blind" analysis
- Background model + data \rightarrow maximum likelihood fit
- Combine Phase I + Phase II profiles

Results

- Background model + data \rightarrow maximum likelihood fit
- Combine Phase I + Phase II profiles

- No statistically significant excess: combined p-value ~1.5σ
- C. Licciardi, Carleton

Energy of Interest

Contributions to BQ±2σ	Phase I (cts)	Phase II (cts)
²³² Th	15.8	4.8
²³⁸ U	9.4	4.2
¹³⁷ Xe	4.4	3.6
Total	30.7±6.0	13.2±1.4
Data	43	8

- Background index ~ 1.5±0.2 x10⁻³ / (kg.yr.keV)
- Component contributions
 - ²³²Th reduction consistent with difference in resolution
 - ¹³⁷Xe rejection ~25%

Sensitivity & Limits

- Combined analysis:
 - Total exposure = 177.6 kg.yr

```
Sensitivity of 3.7x10<sup>25</sup> yr (90% CL)

T_{1/2}^{0\nu\beta\beta} > 1.8 \times 10^{25} yr

\langle m_{\beta\beta} \rangle < 147 - 398 meV

(90% C.L.)

arXiv: 1707.08707
```

• Individual phase limits

	Livetime	Exposure	Limit (90% CL)
Phase I	596.7 d	122.0 kg.yr	$T_{1/2}^{0\nu\beta\beta}$ > 1.0x10 ²⁵ yr
Phase II	271.8 d	55.6 kg.yr	$T_{1/2}^{0\nu\beta\beta}$ > 4.4x10 ²⁵ yr

Outlook

EXO-200: *this result, arXiv:* 1707.08707 New Results by GERDA: *talk by L. Pandola* KamLAND-Zen: *PRL* 117 (2016) 082503 KK&K Claim: *Mod. Phys. Lett., A21* (2006) 1547 Current limits, ¹³⁰Te vs. ¹³⁶Xe:

EXO-200: this result, arXiv: 1707.08707 New Results from CUORE: talk by O. Cremonesi Sensitivity in PRL 115 (2015) 102502

Summary

- New EXO-200 data results show no statistically significant $0\nu\beta\beta$ excess
 - $T_{1/2}^{0\nu\beta\beta} > 1.8 \times 10^{25} \text{ yr} (90\% \text{ CL})$
 - $\langle m_{\beta\beta} \rangle < 147 398 \text{ meV}$
- EXO-200 sensitivity to $0\nu\beta\beta$ of $3.7x10^{25}$ yr, improved by 2x

• On-going EXO-200 Phase-II running will continue to improve sensitivity

University of Alabama, Tuscaloosa AL, USA — M Hughes, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan University of Bern, Switzerland — J-L Vuilleumier University of California, Irvine, Irvine CA, USA — M Moe California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada — I Badhrees, W Cree, R Gornea, K Graham, T Koffas, C Licciardi, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, D Harris, A Iverson, J Todd, T Walton Drexel University, Philadelphia PA, USA — MJ Dolinski, EV Hansen, YH Lin, Y-R Yen Duke University, Bloomington IN, USA — JB Albert, S Daugherty Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, A Robinson, U Wichoski University of Maryland, College Park MD, USA — C Hall University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, A Pocar

McGill University, Montreal QC, Canada – T Brunner, Y Ito, K Murray

The EXO-200 Collaboration

SLAC National Accelerator Laboratory, Menlo Park CA, USA — M Breidenbach, R Conley, T Daniels, J Davis, S Delaquis, A Johnson, LJ Kaufman, B Mong, A Odian, CY Prescott, PC Rowson, JJ Russell, K Skarpaas, A Waite, M Wittgen University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan Friedrich-Alexander-University Erlangen, Nuremberg, Germany G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, M Wagenpfeil, G Wrede, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, T Tolba, L Wen, J Zhao ITEP Moscow, Russia — V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, G Li, A Schubert, M Weber, S Wu Stony Brook University, SUNY, Stony Brook, NY, USA — K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany — W Feldmeier, P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, R Krücken, Y Lan, F Retière, V Strickland Yale University, New Haven CT, USA — Z Li, D Moore, Q Xia

Thank you!

NMEs

For phase space I take the values of Kotila and Iachello (PRC85,034316) 24.81x10⁻¹⁵ for Ca48, 2.363x10⁻¹⁵ (Ge), 14.22x10⁻¹⁵ (Te) and 14.58x10⁻¹⁵ for Xe136.

To convert it into the formula $1/T_{1/2} = G^{0nu} |M|^2 < m_{nu} >^2$ where $< m_{nu} >$ is in eV one needs to divide this by m_e^2 and multiply by g_A^4 . This gives $(G^{0nu})^{-1} = 4.05 \times 10^{24}$ (Ca), 4.24×10^{25} (Ge), 7.056×10^{24} (Te) and 6.88×10^{24} (Xe).

For matrix elements I take the following sources: IBM, Barnea, Kotila, Iachello, PRC87, 014315: 2.33 (Ca), 6.07(Ge), 4.54(Te), 3.73(Xe) EDF, Rodriguez, Martinez-Pinedo, PRL105, 252503: 2.37(Ca), 4.60(Ge), 5.13(Te),4.20(Xe) QRPA, Engel, Simkovic, Vogel, PRC89, 064308 : 0.61(Ca), 4.64(Ge), 3.65(Te),2.02(Xe) NSM, Menendez et al., NPA818, 139: 0.85(Ca), 2.81(Ge), 2.65(Te), 2.19(Xe)

 $< m_{nu} > = 1/M_{Xe} x 1/(G_{Xe})^{1/2} x 1/(T_{1/2}^{Xe})^{1/2}$ where $1/G_{Xe}$ and $T_{1/2}$ are in 10^{24} units and $< m_{nu} >$ is in eV

Thus $\langle m_{nu} \rangle$ (eV)x(T_{1/2}^{Xe})^{1/2} = 0.703(IBM), 0.625(EDF), 1.29 (QRPA), 1.20(NSM)

Purity

• Phase I

• Phase II (new purifiers)

Latest EXO-200 Results, TAUP 2017

Calibration

- Primary calibration from ²²⁸Th source (2615 keV ²⁰⁸Tl γ -line)
- Periodic (~3 months) campaigns using other γ sources
 - ⁶⁰Co, ²²⁶Ra and ¹³⁷Cs

TPC

High-voltage applied between cathode and and

cm

Event reconstruction

- Reconstruct energy and position of all interactions
- ββ signal is simple, but background events more complex
- Differentiate between induction and multiple scatters by pulse shape
- Likelihood-based algorithm "clusters" signals into energy deposits

Pulse shapes for collection and induction signals:

Example multiple-scatter γ event in EXO-200:

C. Licciardi, Carleton

De-radonator - Direct Air Sampling

- Rn tent average in Phase II 0.55 Bq/m³
- Clean room level ~10 Bq/m³

De-radonator – Physics Profile

- Profile of near (vessel) and far (air gap) U components
- Small reduction between phaes within 1.2-sigma

Innermost volume 1.39 kg.yr exposure

